/** * @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed and Distance Transformation * @author OpenCV Team */ #include #include #include #include using namespace std; using namespace cv; int main(int argc, char *argv[]) { //! [load_image] // Load the image CommandLineParser parser( argc, argv, "{@input | cards.png | input image}" ); Mat src = imread( samples::findFile( parser.get( "@input" ) ) ); if( src.empty() ) { cout << "Could not open or find the image!\n" << endl; cout << "Usage: " << argv[0] << " " << endl; return -1; } // Show source image imshow("Source Image", src); //! [load_image] //! [black_bg] // Change the background from white to black, since that will help later to extract // better results during the use of Distance Transform for ( int i = 0; i < src.rows; i++ ) { for ( int j = 0; j < src.cols; j++ ) { if ( src.at(i, j) == Vec3b(255,255,255) ) { src.at(i, j)[0] = 0; src.at(i, j)[1] = 0; src.at(i, j)[2] = 0; } } } // Show output image imshow("Black Background Image", src); //! [black_bg] //! [sharp] // Create a kernel that we will use to sharpen our image Mat kernel = (Mat_(3,3) << 1, 1, 1, 1, -8, 1, 1, 1, 1); // an approximation of second derivative, a quite strong kernel // do the laplacian filtering as it is // well, we need to convert everything in something more deeper then CV_8U // because the kernel has some negative values, // and we can expect in general to have a Laplacian image with negative values // BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255 // so the possible negative number will be truncated Mat imgLaplacian; filter2D(src, imgLaplacian, CV_32F, kernel); Mat sharp; src.convertTo(sharp, CV_32F); Mat imgResult = sharp - imgLaplacian; // convert back to 8bits gray scale imgResult.convertTo(imgResult, CV_8UC3); imgLaplacian.convertTo(imgLaplacian, CV_8UC3); // imshow( "Laplace Filtered Image", imgLaplacian ); imshow( "New Sharped Image", imgResult ); //! [sharp] //! [bin] // Create binary image from source image Mat bw; cvtColor(imgResult, bw, COLOR_BGR2GRAY); threshold(bw, bw, 40, 255, THRESH_BINARY | THRESH_OTSU); imshow("Binary Image", bw); //! [bin] //! [dist] // Perform the distance transform algorithm Mat dist; distanceTransform(bw, dist, DIST_L2, 3); // Normalize the distance image for range = {0.0, 1.0} // so we can visualize and threshold it normalize(dist, dist, 0, 1.0, NORM_MINMAX); imshow("Distance Transform Image", dist); //! [dist] //! [peaks] // Threshold to obtain the peaks // This will be the markers for the foreground objects threshold(dist, dist, 0.4, 1.0, THRESH_BINARY); // Dilate a bit the dist image Mat kernel1 = Mat::ones(3, 3, CV_8U); dilate(dist, dist, kernel1); imshow("Peaks", dist); //! [peaks] //! [seeds] // Create the CV_8U version of the distance image // It is needed for findContours() Mat dist_8u; dist.convertTo(dist_8u, CV_8U); // Find total markers vector > contours; findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // Create the marker image for the watershed algorithm Mat markers = Mat::zeros(dist.size(), CV_32S); // Draw the foreground markers for (size_t i = 0; i < contours.size(); i++) { drawContours(markers, contours, static_cast(i), Scalar(static_cast(i)+1), -1); } // Draw the background marker circle(markers, Point(5,5), 3, Scalar(255), -1); imshow("Markers", markers*10000); //! [seeds] //! [watershed] // Perform the watershed algorithm watershed(imgResult, markers); Mat mark; markers.convertTo(mark, CV_8U); bitwise_not(mark, mark); // imshow("Markers_v2", mark); // uncomment this if you want to see how the mark // image looks like at that point // Generate random colors vector colors; for (size_t i = 0; i < contours.size(); i++) { int b = theRNG().uniform(0, 256); int g = theRNG().uniform(0, 256); int r = theRNG().uniform(0, 256); colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r)); } // Create the result image Mat dst = Mat::zeros(markers.size(), CV_8UC3); // Fill labeled objects with random colors for (int i = 0; i < markers.rows; i++) { for (int j = 0; j < markers.cols; j++) { int index = markers.at(i,j); if (index > 0 && index <= static_cast(contours.size())) { dst.at(i,j) = colors[index-1]; } } } // Visualize the final image imshow("Final Result", dst); //! [watershed] waitKey(); return 0; }