/* dtrti2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int dtrti2_(char *uplo, char *diag, integer *n, doublereal * a, integer *lda, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ integer j; doublereal ajj; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); logical upper; extern /* Subroutine */ int dtrmv_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *); logical nounit; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DTRTI2 computes the inverse of a real upper or lower triangular */ /* matrix. */ /* This is the Level 2 BLAS version of the algorithm. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the matrix A is upper or lower triangular. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* DIAG (input) CHARACTER*1 */ /* Specifies whether or not the matrix A is unit triangular. */ /* = 'N': Non-unit triangular */ /* = 'U': Unit triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the triangular matrix A. If UPLO = 'U', the */ /* leading n by n upper triangular part of the array A contains */ /* the upper triangular matrix, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading n by n lower triangular part of the array A contains */ /* the lower triangular matrix, and the strictly upper */ /* triangular part of A is not referenced. If DIAG = 'U', the */ /* diagonal elements of A are also not referenced and are */ /* assumed to be 1. */ /* On exit, the (triangular) inverse of the original matrix, in */ /* the same storage format. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -k, the k-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); nounit = lsame_(diag, "N"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (! nounit && ! lsame_(diag, "U")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("DTRTI2", &i__1); return 0; } if (upper) { /* Compute inverse of upper triangular matrix. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { if (nounit) { a[j + j * a_dim1] = 1. / a[j + j * a_dim1]; ajj = -a[j + j * a_dim1]; } else { ajj = -1.; } /* Compute elements 1:j-1 of j-th column. */ i__2 = j - 1; dtrmv_("Upper", "No transpose", diag, &i__2, &a[a_offset], lda, & a[j * a_dim1 + 1], &c__1); i__2 = j - 1; dscal_(&i__2, &ajj, &a[j * a_dim1 + 1], &c__1); /* L10: */ } } else { /* Compute inverse of lower triangular matrix. */ for (j = *n; j >= 1; --j) { if (nounit) { a[j + j * a_dim1] = 1. / a[j + j * a_dim1]; ajj = -a[j + j * a_dim1]; } else { ajj = -1.; } if (j < *n) { /* Compute elements j+1:n of j-th column. */ i__1 = *n - j; dtrmv_("Lower", "No transpose", diag, &i__1, &a[j + 1 + (j + 1) * a_dim1], lda, &a[j + 1 + j * a_dim1], &c__1); i__1 = *n - j; dscal_(&i__1, &ajj, &a[j + 1 + j * a_dim1], &c__1); } /* L20: */ } } return 0; /* End of DTRTI2 */ } /* dtrti2_ */