/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include #include #include namespace cv { inline bool is_smaller(const std::pair& p1, const std::pair& p2) { return p1.second < p2.second; } static void orderContours(const std::vector >& contours, Point2f point, std::vector >& order) { order.clear(); size_t i, j, n = contours.size(); for(i = 0; i < n; i++) { size_t ni = contours[i].size(); float min_dist = std::numeric_limits::max(); for(j = 0; j < ni; j++) { double dist = norm(Point2f((float)contours[i][j].x, (float)contours[i][j].y) - point); min_dist = (float)MIN((double)min_dist, dist); } order.push_back(std::pair((int)i, min_dist)); } std::sort(order.begin(), order.end(), is_smaller); } // fit second order curve to a set of 2D points inline void fitCurve2Order(const std::vector& /*points*/, std::vector& /*curve*/) { // TBD } inline void findCurvesCross(const std::vector& /*curve1*/, const std::vector& /*curve2*/, Point2f& /*cross_point*/) { } static void findLinesCrossPoint(Point2f origin1, Point2f dir1, Point2f origin2, Point2f dir2, Point2f& cross_point) { float det = dir2.x*dir1.y - dir2.y*dir1.x; Point2f offset = origin2 - origin1; float alpha = (dir2.x*offset.y - dir2.y*offset.x)/det; cross_point = origin1 + dir1*alpha; } static void findCorner(const std::vector& contour, Point2f point, Point2f& corner) { // find the nearest point double min_dist = std::numeric_limits::max(); int min_idx = -1; // find corner idx for(size_t i = 0; i < contour.size(); i++) { double dist = norm(contour[i] - point); if(dist < min_dist) { min_dist = dist; min_idx = (int)i; } } CV_Assert(min_idx >= 0); // temporary solution, have to make something more precise corner = contour[min_idx]; return; } static int segment_hist_max(const Mat& hist, int& low_thresh, int& high_thresh) { Mat bw; double total_sum = sum(hist).val[0]; double quantile_sum = 0.0; //double min_quantile = 0.2; double low_sum = 0; double max_segment_length = 0; int max_start_x = -1; int max_end_x = -1; int start_x = 0; const double out_of_bells_fraction = 0.1; for(int x = 0; x < hist.size[0]; x++) { quantile_sum += hist.at(x); if(quantile_sum < 0.2*total_sum) continue; if(quantile_sum - low_sum > out_of_bells_fraction*total_sum) { if(max_segment_length < x - start_x) { max_segment_length = x - start_x; max_start_x = start_x; max_end_x = x; } low_sum = quantile_sum; start_x = x; } } if(start_x == -1) { return 0; } else { low_thresh = cvRound(max_start_x + 0.25*(max_end_x - max_start_x)); high_thresh = cvRound(max_start_x + 0.75*(max_end_x - max_start_x)); return 1; } } } bool cv::find4QuadCornerSubpix(InputArray _img, InputOutputArray _corners, Size region_size) { CV_INSTRUMENT_REGION(); Mat img = _img.getMat(), cornersM = _corners.getMat(); int ncorners = cornersM.checkVector(2, CV_32F); CV_Assert( ncorners >= 0 ); Point2f* corners = cornersM.ptr(); const int nbins = 256; float ranges[] = {0, 256}; const float* _ranges = ranges; Mat hist; Mat black_comp, white_comp; for(int i = 0; i < ncorners; i++) { int channels = 0; Rect roi(cvRound(corners[i].x - region_size.width), cvRound(corners[i].y - region_size.height), region_size.width*2 + 1, region_size.height*2 + 1); Mat img_roi = img(roi); calcHist(&img_roi, 1, &channels, Mat(), hist, 1, &nbins, &_ranges); int black_thresh = 0, white_thresh = 0; segment_hist_max(hist, black_thresh, white_thresh); threshold(img, black_comp, black_thresh, 255.0, THRESH_BINARY_INV); threshold(img, white_comp, white_thresh, 255.0, THRESH_BINARY); const int erode_count = 1; erode(black_comp, black_comp, Mat(), Point(-1, -1), erode_count); erode(white_comp, white_comp, Mat(), Point(-1, -1), erode_count); std::vector > white_contours, black_contours; findContours(black_comp, black_contours, RETR_LIST, CHAIN_APPROX_SIMPLE); findContours(white_comp, white_contours, RETR_LIST, CHAIN_APPROX_SIMPLE); if(black_contours.size() < 5 || white_contours.size() < 5) continue; // find two white and black blobs that are close to the input point std::vector > white_order, black_order; orderContours(black_contours, corners[i], black_order); orderContours(white_contours, corners[i], white_order); const float max_dist = 10.0f; if(black_order[0].second > max_dist || black_order[1].second > max_dist || white_order[0].second > max_dist || white_order[1].second > max_dist) { continue; // there will be no improvement in this corner position } const std::vector* quads[4] = {&black_contours[black_order[0].first], &black_contours[black_order[1].first], &white_contours[white_order[0].first], &white_contours[white_order[1].first]}; std::vector quads_approx[4]; Point2f quad_corners[4]; for(int k = 0; k < 4; k++) { std::vector temp; for(size_t j = 0; j < quads[k]->size(); j++) temp.push_back((*quads[k])[j]); approxPolyDP(Mat(temp), quads_approx[k], 0.5, true); findCorner(quads_approx[k], corners[i], quad_corners[k]); quad_corners[k] += Point2f(0.5f, 0.5f); } // cross two lines Point2f origin1 = quad_corners[0]; Point2f dir1 = quad_corners[1] - quad_corners[0]; Point2f origin2 = quad_corners[2]; Point2f dir2 = quad_corners[3] - quad_corners[2]; double angle = acos(dir1.dot(dir2)/(norm(dir1)*norm(dir2))); if(cvIsNaN(angle) || cvIsInf(angle) || angle < 0.5 || angle > CV_PI - 0.5) continue; findLinesCrossPoint(origin1, dir1, origin2, dir2, corners[i]); } return true; }