#!/usr/bin/python import urllib2 import cv2.cv as cv from random import randint MAX_CLUSTERS = 5 if __name__ == "__main__": color_tab = [ cv.CV_RGB(255, 0,0), cv.CV_RGB(0, 255, 0), cv.CV_RGB(100, 100, 255), cv.CV_RGB(255, 0,255), cv.CV_RGB(255, 255, 0)] img = cv.CreateImage((500, 500), 8, 3) rng = cv.RNG(-1) cv.NamedWindow("clusters", 1) while True: cluster_count = randint(2, MAX_CLUSTERS) sample_count = randint(1, 1000) points = cv.CreateMat(sample_count, 1, cv.CV_32FC2) clusters = cv.CreateMat(sample_count, 1, cv.CV_32SC1) # generate random sample from multigaussian distribution for k in range(cluster_count): center = (cv.RandInt(rng)%img.width, cv.RandInt(rng)%img.height) first = k*sample_count/cluster_count last = sample_count if k != cluster_count: last = (k+1)*sample_count/cluster_count point_chunk = cv.GetRows(points, first, last) cv.RandArr(rng, point_chunk, cv.CV_RAND_NORMAL, cv.Scalar(center[0], center[1], 0, 0), cv.Scalar(img.width*0.1, img.height*0.1, 0, 0)) # shuffle samples cv.RandShuffle(points, rng) cv.KMeans2(points, cluster_count, clusters, (cv.CV_TERMCRIT_EPS + cv.CV_TERMCRIT_ITER, 10, 1.0)) cv.Zero(img) for i in range(sample_count): cluster_idx = int(clusters[i, 0]) pt = (cv.Round(points[i, 0][0]), cv.Round(points[i, 0][1])) cv.Circle(img, pt, 2, color_tab[cluster_idx], cv.CV_FILLED, cv.CV_AA, 0) cv.ShowImage("clusters", img) key = cv.WaitKey(0) % 0x100 if key in [27, ord('q'), ord('Q')]: break cv.DestroyWindow("clusters")