from __future__ import print_function import numpy as np import cv2 from cv2 import dnn import timeit def timeit_forward(net): print("Runtime:", timeit.timeit(lambda: net.forward(), number=10)) def get_class_list(): with open('synset_words.txt', 'rt') as f: return [x[x.find(" ") + 1:] for x in f] blob = dnn.blobFromImage(cv2.imread('space_shuttle.jpg'), 1, (224, 224), (104, 117, 123)) print("Input:", blob.shape, blob.dtype) net = dnn.readNetFromCaffe('bvlc_googlenet.prototxt', 'bvlc_googlenet.caffemodel') net.setInput(blob) prob = net.forward() #timeit_forward(net) #Uncomment to check performance print("Output:", prob.shape, prob.dtype) classes = get_class_list() print("Best match", classes[prob.argmax()])