/* slar1v.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int slar1v_(integer *n, integer *b1, integer *bn, real * lambda, real *d__, real *l, real *ld, real *lld, real *pivmin, real * gaptol, real *z__, logical *wantnc, integer *negcnt, real *ztz, real * mingma, integer *r__, integer *isuppz, real *nrminv, real *resid, real *rqcorr, real *work) { /* System generated locals */ integer i__1; real r__1, r__2, r__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__; real s; integer r1, r2; real eps, tmp; integer neg1, neg2, indp, inds; real dplus; extern doublereal slamch_(char *); integer indlpl, indumn; extern logical sisnan_(real *); real dminus; logical sawnan1, sawnan2; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAR1V computes the (scaled) r-th column of the inverse of */ /* the sumbmatrix in rows B1 through BN of the tridiagonal matrix */ /* L D L^T - sigma I. When sigma is close to an eigenvalue, the */ /* computed vector is an accurate eigenvector. Usually, r corresponds */ /* to the index where the eigenvector is largest in magnitude. */ /* The following steps accomplish this computation : */ /* (a) Stationary qd transform, L D L^T - sigma I = L(+) D(+) L(+)^T, */ /* (b) Progressive qd transform, L D L^T - sigma I = U(-) D(-) U(-)^T, */ /* (c) Computation of the diagonal elements of the inverse of */ /* L D L^T - sigma I by combining the above transforms, and choosing */ /* r as the index where the diagonal of the inverse is (one of the) */ /* largest in magnitude. */ /* (d) Computation of the (scaled) r-th column of the inverse using the */ /* twisted factorization obtained by combining the top part of the */ /* the stationary and the bottom part of the progressive transform. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix L D L^T. */ /* B1 (input) INTEGER */ /* First index of the submatrix of L D L^T. */ /* BN (input) INTEGER */ /* Last index of the submatrix of L D L^T. */ /* LAMBDA (input) REAL */ /* The shift. In order to compute an accurate eigenvector, */ /* LAMBDA should be a good approximation to an eigenvalue */ /* of L D L^T. */ /* L (input) REAL array, dimension (N-1) */ /* The (n-1) subdiagonal elements of the unit bidiagonal matrix */ /* L, in elements 1 to N-1. */ /* D (input) REAL array, dimension (N) */ /* The n diagonal elements of the diagonal matrix D. */ /* LD (input) REAL array, dimension (N-1) */ /* The n-1 elements L(i)*D(i). */ /* LLD (input) REAL array, dimension (N-1) */ /* The n-1 elements L(i)*L(i)*D(i). */ /* PIVMIN (input) REAL */ /* The minimum pivot in the Sturm sequence. */ /* GAPTOL (input) REAL */ /* Tolerance that indicates when eigenvector entries are negligible */ /* w.r.t. their contribution to the residual. */ /* Z (input/output) REAL array, dimension (N) */ /* On input, all entries of Z must be set to 0. */ /* On output, Z contains the (scaled) r-th column of the */ /* inverse. The scaling is such that Z(R) equals 1. */ /* WANTNC (input) LOGICAL */ /* Specifies whether NEGCNT has to be computed. */ /* NEGCNT (output) INTEGER */ /* If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin */ /* in the matrix factorization L D L^T, and NEGCNT = -1 otherwise. */ /* ZTZ (output) REAL */ /* The square of the 2-norm of Z. */ /* MINGMA (output) REAL */ /* The reciprocal of the largest (in magnitude) diagonal */ /* element of the inverse of L D L^T - sigma I. */ /* R (input/output) INTEGER */ /* The twist index for the twisted factorization used to */ /* compute Z. */ /* On input, 0 <= R <= N. If R is input as 0, R is set to */ /* the index where (L D L^T - sigma I)^{-1} is largest */ /* in magnitude. If 1 <= R <= N, R is unchanged. */ /* On output, R contains the twist index used to compute Z. */ /* Ideally, R designates the position of the maximum entry in the */ /* eigenvector. */ /* ISUPPZ (output) INTEGER array, dimension (2) */ /* The support of the vector in Z, i.e., the vector Z is */ /* nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). */ /* NRMINV (output) REAL */ /* NRMINV = 1/SQRT( ZTZ ) */ /* RESID (output) REAL */ /* The residual of the FP vector. */ /* RESID = ABS( MINGMA )/SQRT( ZTZ ) */ /* RQCORR (output) REAL */ /* The Rayleigh Quotient correction to LAMBDA. */ /* RQCORR = MINGMA*TMP */ /* WORK (workspace) REAL array, dimension (4*N) */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Beresford Parlett, University of California, Berkeley, USA */ /* Jim Demmel, University of California, Berkeley, USA */ /* Inderjit Dhillon, University of Texas, Austin, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* Christof Voemel, University of California, Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --work; --isuppz; --z__; --lld; --ld; --l; --d__; /* Function Body */ eps = slamch_("Precision"); if (*r__ == 0) { r1 = *b1; r2 = *bn; } else { r1 = *r__; r2 = *r__; } /* Storage for LPLUS */ indlpl = 0; /* Storage for UMINUS */ indumn = *n; inds = (*n << 1) + 1; indp = *n * 3 + 1; if (*b1 == 1) { work[inds] = 0.f; } else { work[inds + *b1 - 1] = lld[*b1 - 1]; } /* Compute the stationary transform (using the differential form) */ /* until the index R2. */ sawnan1 = FALSE_; neg1 = 0; s = work[inds + *b1 - 1] - *lambda; i__1 = r1 - 1; for (i__ = *b1; i__ <= i__1; ++i__) { dplus = d__[i__] + s; work[indlpl + i__] = ld[i__] / dplus; if (dplus < 0.f) { ++neg1; } work[inds + i__] = s * work[indlpl + i__] * l[i__]; s = work[inds + i__] - *lambda; /* L50: */ } sawnan1 = sisnan_(&s); if (sawnan1) { goto L60; } i__1 = r2 - 1; for (i__ = r1; i__ <= i__1; ++i__) { dplus = d__[i__] + s; work[indlpl + i__] = ld[i__] / dplus; work[inds + i__] = s * work[indlpl + i__] * l[i__]; s = work[inds + i__] - *lambda; /* L51: */ } sawnan1 = sisnan_(&s); L60: if (sawnan1) { /* Runs a slower version of the above loop if a NaN is detected */ neg1 = 0; s = work[inds + *b1 - 1] - *lambda; i__1 = r1 - 1; for (i__ = *b1; i__ <= i__1; ++i__) { dplus = d__[i__] + s; if (dabs(dplus) < *pivmin) { dplus = -(*pivmin); } work[indlpl + i__] = ld[i__] / dplus; if (dplus < 0.f) { ++neg1; } work[inds + i__] = s * work[indlpl + i__] * l[i__]; if (work[indlpl + i__] == 0.f) { work[inds + i__] = lld[i__]; } s = work[inds + i__] - *lambda; /* L70: */ } i__1 = r2 - 1; for (i__ = r1; i__ <= i__1; ++i__) { dplus = d__[i__] + s; if (dabs(dplus) < *pivmin) { dplus = -(*pivmin); } work[indlpl + i__] = ld[i__] / dplus; work[inds + i__] = s * work[indlpl + i__] * l[i__]; if (work[indlpl + i__] == 0.f) { work[inds + i__] = lld[i__]; } s = work[inds + i__] - *lambda; /* L71: */ } } /* Compute the progressive transform (using the differential form) */ /* until the index R1 */ sawnan2 = FALSE_; neg2 = 0; work[indp + *bn - 1] = d__[*bn] - *lambda; i__1 = r1; for (i__ = *bn - 1; i__ >= i__1; --i__) { dminus = lld[i__] + work[indp + i__]; tmp = d__[i__] / dminus; if (dminus < 0.f) { ++neg2; } work[indumn + i__] = l[i__] * tmp; work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda; /* L80: */ } tmp = work[indp + r1 - 1]; sawnan2 = sisnan_(&tmp); if (sawnan2) { /* Runs a slower version of the above loop if a NaN is detected */ neg2 = 0; i__1 = r1; for (i__ = *bn - 1; i__ >= i__1; --i__) { dminus = lld[i__] + work[indp + i__]; if (dabs(dminus) < *pivmin) { dminus = -(*pivmin); } tmp = d__[i__] / dminus; if (dminus < 0.f) { ++neg2; } work[indumn + i__] = l[i__] * tmp; work[indp + i__ - 1] = work[indp + i__] * tmp - *lambda; if (tmp == 0.f) { work[indp + i__ - 1] = d__[i__] - *lambda; } /* L100: */ } } /* Find the index (from R1 to R2) of the largest (in magnitude) */ /* diagonal element of the inverse */ *mingma = work[inds + r1 - 1] + work[indp + r1 - 1]; if (*mingma < 0.f) { ++neg1; } if (*wantnc) { *negcnt = neg1 + neg2; } else { *negcnt = -1; } if (dabs(*mingma) == 0.f) { *mingma = eps * work[inds + r1 - 1]; } *r__ = r1; i__1 = r2 - 1; for (i__ = r1; i__ <= i__1; ++i__) { tmp = work[inds + i__] + work[indp + i__]; if (tmp == 0.f) { tmp = eps * work[inds + i__]; } if (dabs(tmp) <= dabs(*mingma)) { *mingma = tmp; *r__ = i__ + 1; } /* L110: */ } /* Compute the FP vector: solve N^T v = e_r */ isuppz[1] = *b1; isuppz[2] = *bn; z__[*r__] = 1.f; *ztz = 1.f; /* Compute the FP vector upwards from R */ if (! sawnan1 && ! sawnan2) { i__1 = *b1; for (i__ = *r__ - 1; i__ >= i__1; --i__) { z__[i__] = -(work[indlpl + i__] * z__[i__ + 1]); if (((r__1 = z__[i__], dabs(r__1)) + (r__2 = z__[i__ + 1], dabs( r__2))) * (r__3 = ld[i__], dabs(r__3)) < *gaptol) { z__[i__] = 0.f; isuppz[1] = i__ + 1; goto L220; } *ztz += z__[i__] * z__[i__]; /* L210: */ } L220: ; } else { /* Run slower loop if NaN occurred. */ i__1 = *b1; for (i__ = *r__ - 1; i__ >= i__1; --i__) { if (z__[i__ + 1] == 0.f) { z__[i__] = -(ld[i__ + 1] / ld[i__]) * z__[i__ + 2]; } else { z__[i__] = -(work[indlpl + i__] * z__[i__ + 1]); } if (((r__1 = z__[i__], dabs(r__1)) + (r__2 = z__[i__ + 1], dabs( r__2))) * (r__3 = ld[i__], dabs(r__3)) < *gaptol) { z__[i__] = 0.f; isuppz[1] = i__ + 1; goto L240; } *ztz += z__[i__] * z__[i__]; /* L230: */ } L240: ; } /* Compute the FP vector downwards from R in blocks of size BLKSIZ */ if (! sawnan1 && ! sawnan2) { i__1 = *bn - 1; for (i__ = *r__; i__ <= i__1; ++i__) { z__[i__ + 1] = -(work[indumn + i__] * z__[i__]); if (((r__1 = z__[i__], dabs(r__1)) + (r__2 = z__[i__ + 1], dabs( r__2))) * (r__3 = ld[i__], dabs(r__3)) < *gaptol) { z__[i__ + 1] = 0.f; isuppz[2] = i__; goto L260; } *ztz += z__[i__ + 1] * z__[i__ + 1]; /* L250: */ } L260: ; } else { /* Run slower loop if NaN occurred. */ i__1 = *bn - 1; for (i__ = *r__; i__ <= i__1; ++i__) { if (z__[i__] == 0.f) { z__[i__ + 1] = -(ld[i__ - 1] / ld[i__]) * z__[i__ - 1]; } else { z__[i__ + 1] = -(work[indumn + i__] * z__[i__]); } if (((r__1 = z__[i__], dabs(r__1)) + (r__2 = z__[i__ + 1], dabs( r__2))) * (r__3 = ld[i__], dabs(r__3)) < *gaptol) { z__[i__ + 1] = 0.f; isuppz[2] = i__; goto L280; } *ztz += z__[i__ + 1] * z__[i__ + 1]; /* L270: */ } L280: ; } /* Compute quantities for convergence test */ tmp = 1.f / *ztz; *nrminv = sqrt(tmp); *resid = dabs(*mingma) * *nrminv; *rqcorr = *mingma * tmp; return 0; /* End of SLAR1V */ } /* slar1v_ */