/* slaed2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static real c_b3 = -1.f; static integer c__1 = 1; /* Subroutine */ int slaed2_(integer *k, integer *n, integer *n1, real *d__, real *q, integer *ldq, integer *indxq, real *rho, real *z__, real * dlamda, real *w, real *q2, integer *indx, integer *indxc, integer * indxp, integer *coltyp, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; real r__1, r__2, r__3, r__4; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ real c__; integer i__, j; real s, t; integer k2, n2, ct, nj, pj, js, iq1, iq2, n1p1; real eps, tau, tol; integer psm[4], imax, jmax, ctot[4]; extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, integer *, real *, real *), sscal_(integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer * ); extern doublereal slapy2_(real *, real *), slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); extern integer isamax_(integer *, real *, integer *); extern /* Subroutine */ int slamrg_(integer *, integer *, real *, integer *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAED2 merges the two sets of eigenvalues together into a single */ /* sorted set. Then it tries to deflate the size of the problem. */ /* There are two ways in which deflation can occur: when two or more */ /* eigenvalues are close together or if there is a tiny entry in the */ /* Z vector. For each such occurrence the order of the related secular */ /* equation problem is reduced by one. */ /* Arguments */ /* ========= */ /* K (output) INTEGER */ /* The number of non-deflated eigenvalues, and the order of the */ /* related secular equation. 0 <= K <=N. */ /* N (input) INTEGER */ /* The dimension of the symmetric tridiagonal matrix. N >= 0. */ /* N1 (input) INTEGER */ /* The location of the last eigenvalue in the leading sub-matrix. */ /* min(1,N) <= N1 <= N/2. */ /* D (input/output) REAL array, dimension (N) */ /* On entry, D contains the eigenvalues of the two submatrices to */ /* be combined. */ /* On exit, D contains the trailing (N-K) updated eigenvalues */ /* (those which were deflated) sorted into increasing order. */ /* Q (input/output) REAL array, dimension (LDQ, N) */ /* On entry, Q contains the eigenvectors of two submatrices in */ /* the two square blocks with corners at (1,1), (N1,N1) */ /* and (N1+1, N1+1), (N,N). */ /* On exit, Q contains the trailing (N-K) updated eigenvectors */ /* (those which were deflated) in its last N-K columns. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= max(1,N). */ /* INDXQ (input/output) INTEGER array, dimension (N) */ /* The permutation which separately sorts the two sub-problems */ /* in D into ascending order. Note that elements in the second */ /* half of this permutation must first have N1 added to their */ /* values. Destroyed on exit. */ /* RHO (input/output) REAL */ /* On entry, the off-diagonal element associated with the rank-1 */ /* cut which originally split the two submatrices which are now */ /* being recombined. */ /* On exit, RHO has been modified to the value required by */ /* SLAED3. */ /* Z (input) REAL array, dimension (N) */ /* On entry, Z contains the updating vector (the last */ /* row of the first sub-eigenvector matrix and the first row of */ /* the second sub-eigenvector matrix). */ /* On exit, the contents of Z have been destroyed by the updating */ /* process. */ /* DLAMDA (output) REAL array, dimension (N) */ /* A copy of the first K eigenvalues which will be used by */ /* SLAED3 to form the secular equation. */ /* W (output) REAL array, dimension (N) */ /* The first k values of the final deflation-altered z-vector */ /* which will be passed to SLAED3. */ /* Q2 (output) REAL array, dimension (N1**2+(N-N1)**2) */ /* A copy of the first K eigenvectors which will be used by */ /* SLAED3 in a matrix multiply (SGEMM) to solve for the new */ /* eigenvectors. */ /* INDX (workspace) INTEGER array, dimension (N) */ /* The permutation used to sort the contents of DLAMDA into */ /* ascending order. */ /* INDXC (output) INTEGER array, dimension (N) */ /* The permutation used to arrange the columns of the deflated */ /* Q matrix into three groups: the first group contains non-zero */ /* elements only at and above N1, the second contains */ /* non-zero elements only below N1, and the third is dense. */ /* INDXP (workspace) INTEGER array, dimension (N) */ /* The permutation used to place deflated values of D at the end */ /* of the array. INDXP(1:K) points to the nondeflated D-values */ /* and INDXP(K+1:N) points to the deflated eigenvalues. */ /* COLTYP (workspace/output) INTEGER array, dimension (N) */ /* During execution, a label which will indicate which of the */ /* following types a column in the Q2 matrix is: */ /* 1 : non-zero in the upper half only; */ /* 2 : dense; */ /* 3 : non-zero in the lower half only; */ /* 4 : deflated. */ /* On exit, COLTYP(i) is the number of columns of type i, */ /* for i=1 to 4 only. */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Jeff Rutter, Computer Science Division, University of California */ /* at Berkeley, USA */ /* Modified by Francoise Tisseur, University of Tennessee. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --indxq; --z__; --dlamda; --w; --q2; --indx; --indxc; --indxp; --coltyp; /* Function Body */ *info = 0; if (*n < 0) { *info = -2; } else if (*ldq < max(1,*n)) { *info = -6; } else /* if(complicated condition) */ { /* Computing MIN */ i__1 = 1, i__2 = *n / 2; if (min(i__1,i__2) > *n1 || *n / 2 < *n1) { *info = -3; } } if (*info != 0) { i__1 = -(*info); xerbla_("SLAED2", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } n2 = *n - *n1; n1p1 = *n1 + 1; if (*rho < 0.f) { sscal_(&n2, &c_b3, &z__[n1p1], &c__1); } /* Normalize z so that norm(z) = 1. Since z is the concatenation of */ /* two normalized vectors, norm2(z) = sqrt(2). */ t = 1.f / sqrt(2.f); sscal_(n, &t, &z__[1], &c__1); /* RHO = ABS( norm(z)**2 * RHO ) */ *rho = (r__1 = *rho * 2.f, dabs(r__1)); /* Sort the eigenvalues into increasing order */ i__1 = *n; for (i__ = n1p1; i__ <= i__1; ++i__) { indxq[i__] += *n1; /* L10: */ } /* re-integrate the deflated parts from the last pass */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { dlamda[i__] = d__[indxq[i__]]; /* L20: */ } slamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]); i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { indx[i__] = indxq[indxc[i__]]; /* L30: */ } /* Calculate the allowable deflation tolerance */ imax = isamax_(n, &z__[1], &c__1); jmax = isamax_(n, &d__[1], &c__1); eps = slamch_("Epsilon"); /* Computing MAX */ r__3 = (r__1 = d__[jmax], dabs(r__1)), r__4 = (r__2 = z__[imax], dabs( r__2)); tol = eps * 8.f * dmax(r__3,r__4); /* If the rank-1 modifier is small enough, no more needs to be done */ /* except to reorganize Q so that its columns correspond with the */ /* elements in D. */ if (*rho * (r__1 = z__[imax], dabs(r__1)) <= tol) { *k = 0; iq2 = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__ = indx[j]; scopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1); dlamda[j] = d__[i__]; iq2 += *n; /* L40: */ } slacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq); scopy_(n, &dlamda[1], &c__1, &d__[1], &c__1); goto L190; } /* If there are multiple eigenvalues then the problem deflates. Here */ /* the number of equal eigenvalues are found. As each equal */ /* eigenvalue is found, an elementary reflector is computed to rotate */ /* the corresponding eigensubspace so that the corresponding */ /* components of Z are zero in this new basis. */ i__1 = *n1; for (i__ = 1; i__ <= i__1; ++i__) { coltyp[i__] = 1; /* L50: */ } i__1 = *n; for (i__ = n1p1; i__ <= i__1; ++i__) { coltyp[i__] = 3; /* L60: */ } *k = 0; k2 = *n + 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { nj = indx[j]; if (*rho * (r__1 = z__[nj], dabs(r__1)) <= tol) { /* Deflate due to small z component. */ --k2; coltyp[nj] = 4; indxp[k2] = nj; if (j == *n) { goto L100; } } else { pj = nj; goto L80; } /* L70: */ } L80: ++j; nj = indx[j]; if (j > *n) { goto L100; } if (*rho * (r__1 = z__[nj], dabs(r__1)) <= tol) { /* Deflate due to small z component. */ --k2; coltyp[nj] = 4; indxp[k2] = nj; } else { /* Check if eigenvalues are close enough to allow deflation. */ s = z__[pj]; c__ = z__[nj]; /* Find sqrt(a**2+b**2) without overflow or */ /* destructive underflow. */ tau = slapy2_(&c__, &s); t = d__[nj] - d__[pj]; c__ /= tau; s = -s / tau; if ((r__1 = t * c__ * s, dabs(r__1)) <= tol) { /* Deflation is possible. */ z__[nj] = tau; z__[pj] = 0.f; if (coltyp[nj] != coltyp[pj]) { coltyp[nj] = 2; } coltyp[pj] = 4; srot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, & c__, &s); /* Computing 2nd power */ r__1 = c__; /* Computing 2nd power */ r__2 = s; t = d__[pj] * (r__1 * r__1) + d__[nj] * (r__2 * r__2); /* Computing 2nd power */ r__1 = s; /* Computing 2nd power */ r__2 = c__; d__[nj] = d__[pj] * (r__1 * r__1) + d__[nj] * (r__2 * r__2); d__[pj] = t; --k2; i__ = 1; L90: if (k2 + i__ <= *n) { if (d__[pj] < d__[indxp[k2 + i__]]) { indxp[k2 + i__ - 1] = indxp[k2 + i__]; indxp[k2 + i__] = pj; ++i__; goto L90; } else { indxp[k2 + i__ - 1] = pj; } } else { indxp[k2 + i__ - 1] = pj; } pj = nj; } else { ++(*k); dlamda[*k] = d__[pj]; w[*k] = z__[pj]; indxp[*k] = pj; pj = nj; } } goto L80; L100: /* Record the last eigenvalue. */ ++(*k); dlamda[*k] = d__[pj]; w[*k] = z__[pj]; indxp[*k] = pj; /* Count up the total number of the various types of columns, then */ /* form a permutation which positions the four column types into */ /* four uniform groups (although one or more of these groups may be */ /* empty). */ for (j = 1; j <= 4; ++j) { ctot[j - 1] = 0; /* L110: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { ct = coltyp[j]; ++ctot[ct - 1]; /* L120: */ } /* PSM(*) = Position in SubMatrix (of types 1 through 4) */ psm[0] = 1; psm[1] = ctot[0] + 1; psm[2] = psm[1] + ctot[1]; psm[3] = psm[2] + ctot[2]; *k = *n - ctot[3]; /* Fill out the INDXC array so that the permutation which it induces */ /* will place all type-1 columns first, all type-2 columns next, */ /* then all type-3's, and finally all type-4's. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { js = indxp[j]; ct = coltyp[js]; indx[psm[ct - 1]] = js; indxc[psm[ct - 1]] = j; ++psm[ct - 1]; /* L130: */ } /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */ /* and Q2 respectively. The eigenvalues/vectors which were not */ /* deflated go into the first K slots of DLAMDA and Q2 respectively, */ /* while those which were deflated go into the last N - K slots. */ i__ = 1; iq1 = 1; iq2 = (ctot[0] + ctot[1]) * *n1 + 1; i__1 = ctot[0]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; scopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1); z__[i__] = d__[js]; ++i__; iq1 += *n1; /* L140: */ } i__1 = ctot[1]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; scopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1); scopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1); z__[i__] = d__[js]; ++i__; iq1 += *n1; iq2 += n2; /* L150: */ } i__1 = ctot[2]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; scopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1); z__[i__] = d__[js]; ++i__; iq2 += n2; /* L160: */ } iq1 = iq2; i__1 = ctot[3]; for (j = 1; j <= i__1; ++j) { js = indx[i__]; scopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1); iq2 += *n; z__[i__] = d__[js]; ++i__; /* L170: */ } /* The deflated eigenvalues and their corresponding vectors go back */ /* into the last N - K slots of D and Q respectively. */ slacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq); i__1 = *n - *k; scopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1); /* Copy CTOT into COLTYP for referencing in SLAED3. */ for (j = 1; j <= 4; ++j) { coltyp[j] = ctot[j - 1]; /* L180: */ } L190: return 0; /* End of SLAED2 */ } /* slaed2_ */