// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "precomp.hpp" namespace cv { namespace dnn { CV__DNN_INLINE_NS_BEGIN Layer::Layer() { preferableTarget = DNN_TARGET_CPU; } Layer::Layer(const LayerParams& params) : blobs(params.blobs) , name(params.name) , type(params.type) { preferableTarget = DNN_TARGET_CPU; } void Layer::setParamsFrom(const LayerParams& params) { blobs = params.blobs; name = params.name; type = params.type; } int Layer::inputNameToIndex(String) { return -1; } int Layer::outputNameToIndex(const String&) { return 0; } bool Layer::supportBackend(int backendId) { return backendId == DNN_BACKEND_OPENCV; } Ptr Layer::initCUDA( void*, const std::vector>&, const std::vector>&) { CV_Error(Error::StsNotImplemented, "CUDA pipeline of " + type + " layers is not defined."); return Ptr(); } Ptr Layer::initVkCom(const std::vector > &inputs, std::vector > &outputs) { CV_Error(Error::StsNotImplemented, "VkCom pipeline of " + type + " layers is not defined."); return Ptr(); } Ptr Layer::initHalide(const std::vector>&) { CV_Error(Error::StsNotImplemented, "Halide pipeline of " + type + " layers is not defined."); return Ptr(); } Ptr Layer::initNgraph(const std::vector>& inputs, const std::vector>& nodes) { CV_Error(Error::StsNotImplemented, "Inference Engine pipeline of " + type + " layers is not defined."); return Ptr(); } Ptr Layer::initWebnn(const std::vector>& inputs, const std::vector>& nodes) { CV_Error(Error::StsNotImplemented, "WebNN pipeline of " + type + " layers is not defined."); return Ptr(); } Ptr Layer::initTimVX(void* timVxInfo, const std::vector > & inputsWrapper, const std::vector > & outputsWrapper, bool isLast) { CV_Error(Error::StsNotImplemented, "TimVX pipeline of " + type + " layers is not defined."); return Ptr(); } Ptr Layer::initCann(const std::vector > &inputs, const std::vector > &outputs, const std::vector >& nodes) { CV_Error(Error::StsNotImplemented, "CANN pipeline of " + type + " layers is not defined."); return Ptr(); } Ptr Layer::tryAttach(const Ptr& node) { return Ptr(); } bool Layer::setActivation(const Ptr&) { return false; } bool Layer::tryFuse(Ptr&) { return false; } void Layer::getScaleShift(Mat& scale, Mat& shift) const { scale = Mat(); shift = Mat(); } void Layer::getScaleZeropoint(float& scale, int& zeropoint) const { scale = 1.f; zeropoint = 0; } void Layer::unsetAttached() { setActivation(Ptr()); } template static void vecToPVec(const std::vector& v, std::vector& pv) { pv.resize(v.size()); for (size_t i = 0; i < v.size(); i++) pv[i] = const_cast(&v[i]); } void Layer::finalize(const std::vector& inputs, std::vector& outputs) { CV_TRACE_FUNCTION(); this->finalize((InputArrayOfArrays)inputs, (OutputArrayOfArrays)outputs); } void Layer::finalize(const std::vector& input, std::vector& output) { CV_UNUSED(input); CV_UNUSED(output); } void Layer::finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) { CV_TRACE_FUNCTION(); std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); std::vector inputsp; vecToPVec(inputs, inputsp); this->finalize(inputsp, outputs); } std::vector Layer::finalize(const std::vector& inputs) { CV_TRACE_FUNCTION(); std::vector outputs; this->finalize(inputs, outputs); return outputs; } void Layer::forward(std::vector& input, std::vector& output, std::vector& internals) { // We kept this method for compatibility. DNN calls it now only to support users' implementations. } void Layer::forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); } void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); if (preferableTarget == DNN_TARGET_OPENCL_FP16 && inputs_arr.depth() == CV_16S) { std::vector inputs; std::vector outputs; std::vector internals; std::vector orig_inputs; std::vector orig_outputs; std::vector orig_internals; inputs_arr.getUMatVector(orig_inputs); outputs_arr.getUMatVector(orig_outputs); internals_arr.getUMatVector(orig_internals); inputs.resize(orig_inputs.size()); for (size_t i = 0; i < orig_inputs.size(); i++) convertFp16(orig_inputs[i], inputs[i]); outputs.resize(orig_outputs.size()); for (size_t i = 0; i < orig_outputs.size(); i++) outputs[i].create(shape(orig_outputs[i]), CV_32F); internals.resize(orig_internals.size()); for (size_t i = 0; i < orig_internals.size(); i++) internals[i].create(shape(orig_internals[i]), CV_32F); forward(inputs, outputs, internals); for (size_t i = 0; i < outputs.size(); i++) convertFp16(outputs[i], orig_outputs[i]); // sync results back outputs_arr.assign(orig_outputs); internals_arr.assign(orig_internals); return; } std::vector inpvec; std::vector outputs; std::vector internals; inputs_arr.getMatVector(inpvec); outputs_arr.getMatVector(outputs); internals_arr.getMatVector(internals); std::vector inputs(inpvec.size()); for (int i = 0; i < inpvec.size(); i++) inputs[i] = &inpvec[i]; this->forward(inputs, outputs, internals); // sync results back outputs_arr.assign(outputs); internals_arr.assign(internals); } void Layer::run(const std::vector& inputs, std::vector& outputs, std::vector& internals) { CV_TRACE_FUNCTION(); this->finalize(inputs, outputs); this->forward(inputs, outputs, internals); } bool Layer::tryQuantize(const std::vector>& scales, const std::vector>& zeropoints, LayerParams& params) { return false; } Layer::~Layer() {} bool Layer::getMemoryShapes(const std::vector& inputs, const int requiredOutputs, std::vector& outputs, std::vector& internals) const { CV_Assert(inputs.size()); outputs.assign(std::max(requiredOutputs, (int)inputs.size()), inputs[0]); return false; } bool Layer::updateMemoryShapes(const std::vector& inputs) { return true; } CV__DNN_INLINE_NS_END }} // namespace cv::dnn