/* * * select3obj.cpp With a calibration chessboard on a table, mark an object in a 3D box and * track that object in all subseqent frames as long as the camera can see * the chessboard. Also segments the object using the box projection. This * program is useful for collecting large datasets of many views of an object * on a table. * */ #include "opencv2/core.hpp" #include #include "opencv2/imgproc.hpp" #include "opencv2/calib3d.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/videoio.hpp" #include "opencv2/highgui.hpp" #include #include #include using namespace std; using namespace cv; const char* helphelp = "\nThis program's purpose is to collect data sets of an object and its segmentation mask.\n" "\n" "It shows how to use a calibrated camera together with a calibration pattern to\n" "compute the homography of the plane the calibration pattern is on. It also shows grabCut\n" "segmentation etc.\n" "\n" "select3dobj -w= -h= [-s=]\n" " -i= -o=\n" "\n" " -w= Number of chessboard corners wide\n" " -h= Number of chessboard corners width\n" " [-s=] Optional measure of chessboard squares in meters\n" " -i= Camera matrix .yml file from calibration.cpp\n" " -o= Prefix the output segmentation images with this\n" " [video_filename/cameraId] If present, read from that video file or that ID\n" "\n" "Using a camera's intrinsics (from calibrating a camera -- see calibration.cpp) and an\n" "image of the object sitting on a planar surface with a calibration pattern of\n" "(board_width x board_height) on the surface, we draw a 3D box aroung the object. From\n" "then on, we can move a camera and as long as it sees the chessboard calibration pattern,\n" "it will store a mask of where the object is. We get succesive images using \n" "of the segmentation mask containing the object. This makes creating training sets easy.\n" "It is best of the chessboard is odd x even in dimensions to avoid amiguous poses.\n" "\n" "The actions one can use while the program is running are:\n" "\n" " Select object as 3D box with the mouse.\n" " First draw one line on the plane to outline the projection of that object on the plane\n" " Then extend that line into a box to encompass the projection of that object onto the plane\n" " The use the mouse again to extend the box upwards from the plane to encase the object.\n" " Then use the following commands\n" " ESC - Reset the selection\n" " SPACE - Skip the frame; move to the next frame (not in video mode)\n" " ENTER - Confirm the selection. Grab next object in video mode.\n" " q - Exit the program\n" "\n\n"; // static void help() // { // puts(helphelp); // } struct MouseEvent { MouseEvent() { event = -1; buttonState = 0; } Point pt; int event; int buttonState; }; static void onMouse(int event, int x, int y, int flags, void* userdata) { MouseEvent* data = (MouseEvent*)userdata; data->event = event; data->pt = Point(x,y); data->buttonState = flags; } static bool readCameraMatrix(const string& filename, Mat& cameraMatrix, Mat& distCoeffs, Size& calibratedImageSize ) { FileStorage fs(filename, FileStorage::READ); fs["image_width"] >> calibratedImageSize.width; fs["image_height"] >> calibratedImageSize.height; fs["distortion_coefficients"] >> distCoeffs; fs["camera_matrix"] >> cameraMatrix; if( distCoeffs.type() != CV_64F ) distCoeffs = Mat_(distCoeffs); if( cameraMatrix.type() != CV_64F ) cameraMatrix = Mat_(cameraMatrix); return true; } static void calcChessboardCorners(Size boardSize, float squareSize, vector& corners) { corners.resize(0); for( int i = 0; i < boardSize.height; i++ ) for( int j = 0; j < boardSize.width; j++ ) corners.push_back(Point3f(float(j*squareSize), float(i*squareSize), 0)); } static Point3f image2plane(Point2f imgpt, const Mat& R, const Mat& tvec, const Mat& cameraMatrix, double Z) { Mat R1 = R.clone(); R1.col(2) = R1.col(2)*Z + tvec; Mat_ v = (cameraMatrix*R1).inv()*(Mat_(3,1) << imgpt.x, imgpt.y, 1); double iw = fabs(v(2,0)) > DBL_EPSILON ? 1./v(2,0) : 0; return Point3f((float)(v(0,0)*iw), (float)(v(1,0)*iw), (float)Z); } static Rect extract3DBox(const Mat& frame, Mat& shownFrame, Mat& selectedObjFrame, const Mat& cameraMatrix, const Mat& rvec, const Mat& tvec, const vector& box, int nobjpt, bool runExtraSegmentation) { selectedObjFrame = Mat::zeros(frame.size(), frame.type()); if( nobjpt == 0 ) return Rect(); vector objpt; vector imgpt; objpt.push_back(box[0]); if( nobjpt > 1 ) objpt.push_back(box[1]); if( nobjpt > 2 ) { objpt.push_back(box[2]); objpt.push_back(objpt[2] - objpt[1] + objpt[0]); } if( nobjpt > 3 ) for( int i = 0; i < 4; i++ ) objpt.push_back(Point3f(objpt[i].x, objpt[i].y, box[3].z)); projectPoints(Mat(objpt), rvec, tvec, cameraMatrix, Mat(), imgpt); if( !shownFrame.empty() ) { if( nobjpt == 1 ) circle(shownFrame, imgpt[0], 3, Scalar(0,255,0), -1, LINE_AA); else if( nobjpt == 2 ) { circle(shownFrame, imgpt[0], 3, Scalar(0,255,0), -1, LINE_AA); circle(shownFrame, imgpt[1], 3, Scalar(0,255,0), -1, LINE_AA); line(shownFrame, imgpt[0], imgpt[1], Scalar(0,255,0), 3, LINE_AA); } else if( nobjpt == 3 ) for( int i = 0; i < 4; i++ ) { circle(shownFrame, imgpt[i], 3, Scalar(0,255,0), -1, LINE_AA); line(shownFrame, imgpt[i], imgpt[(i+1)%4], Scalar(0,255,0), 3, LINE_AA); } else for( int i = 0; i < 8; i++ ) { circle(shownFrame, imgpt[i], 3, Scalar(0,255,0), -1, LINE_AA); line(shownFrame, imgpt[i], imgpt[(i+1)%4 + (i/4)*4], Scalar(0,255,0), 3, LINE_AA); line(shownFrame, imgpt[i], imgpt[i%4], Scalar(0,255,0), 3, LINE_AA); } } if( nobjpt <= 2 ) return Rect(); vector hull; convexHull(Mat_(Mat(imgpt)), hull); Mat selectedObjMask = Mat::zeros(frame.size(), CV_8U); fillConvexPoly(selectedObjMask, &hull[0], (int)hull.size(), Scalar::all(255), 8, 0); Rect roi = boundingRect(Mat(hull)) & Rect(Point(), frame.size()); if( runExtraSegmentation ) { selectedObjMask = Scalar::all(GC_BGD); fillConvexPoly(selectedObjMask, &hull[0], (int)hull.size(), Scalar::all(GC_PR_FGD), 8, 0); Mat bgdModel, fgdModel; grabCut(frame, selectedObjMask, roi, bgdModel, fgdModel, 3, GC_INIT_WITH_RECT + GC_INIT_WITH_MASK); bitwise_and(selectedObjMask, Scalar::all(1), selectedObjMask); } frame.copyTo(selectedObjFrame, selectedObjMask); return roi; } static int select3DBox(const string& windowname, const string& selWinName, const Mat& frame, const Mat& cameraMatrix, const Mat& rvec, const Mat& tvec, vector& box) { const float eps = 1e-3f; MouseEvent mouse; setMouseCallback(windowname, onMouse, &mouse); vector tempobj(8); vector imgpt(4), tempimg(8); vector temphull; int nobjpt = 0; Mat R, selectedObjMask, selectedObjFrame, shownFrame; Rodrigues(rvec, R); box.resize(4); for(;;) { float Z = 0.f; bool dragging = (mouse.buttonState & EVENT_FLAG_LBUTTON) != 0; int npt = nobjpt; if( (mouse.event == EVENT_LBUTTONDOWN || mouse.event == EVENT_LBUTTONUP || dragging) && nobjpt < 4 ) { Point2f m = mouse.pt; if( nobjpt < 2 ) imgpt[npt] = m; else { tempobj.resize(1); int nearestIdx = npt-1; if( nobjpt == 3 ) { nearestIdx = 0; for( int i = 1; i < npt; i++ ) if( norm(m - imgpt[i]) < norm(m - imgpt[nearestIdx]) ) nearestIdx = i; } if( npt == 2 ) { float dx = box[1].x - box[0].x, dy = box[1].y - box[0].y; float len = 1.f/std::sqrt(dx*dx+dy*dy); tempobj[0] = Point3f(dy*len + box[nearestIdx].x, -dx*len + box[nearestIdx].y, 0.f); } else tempobj[0] = Point3f(box[nearestIdx].x, box[nearestIdx].y, 1.f); projectPoints(Mat(tempobj), rvec, tvec, cameraMatrix, Mat(), tempimg); Point2f a = imgpt[nearestIdx], b = tempimg[0], d1 = b - a, d2 = m - a; float n1 = (float)norm(d1), n2 = (float)norm(d2); if( n1*n2 < eps ) imgpt[npt] = a; else { Z = d1.dot(d2)/(n1*n1); imgpt[npt] = d1*Z + a; } } box[npt] = image2plane(imgpt[npt], R, tvec, cameraMatrix, npt<3 ? 0 : Z); if( (npt == 0 && mouse.event == EVENT_LBUTTONDOWN) || (npt > 0 && norm(box[npt] - box[npt-1]) > eps && mouse.event == EVENT_LBUTTONUP) ) { nobjpt++; if( nobjpt < 4 ) { imgpt[nobjpt] = imgpt[nobjpt-1]; box[nobjpt] = box[nobjpt-1]; } } // reset the event mouse.event = -1; //mouse.buttonState = 0; npt++; } frame.copyTo(shownFrame); extract3DBox(frame, shownFrame, selectedObjFrame, cameraMatrix, rvec, tvec, box, npt, false); imshow(windowname, shownFrame); imshow(selWinName, selectedObjFrame); int c = waitKey(30); if( (c & 255) == 27 ) { nobjpt = 0; } if( c == 'q' || c == 'Q' || c == ' ' ) { box.clear(); return c == ' ' ? -1 : -100; } if( (c == '\r' || c == '\n') && nobjpt == 4 && box[3].z != 0 ) return 1; } } static bool readModelViews( const string& filename, vector& box, vector& imagelist, vector& roiList, vector& poseList ) { imagelist.resize(0); roiList.resize(0); poseList.resize(0); box.resize(0); FileStorage fs(filename, FileStorage::READ); if( !fs.isOpened() ) return false; fs["box"] >> box; FileNode all = fs["views"]; if( all.type() != FileNode::SEQ ) return false; FileNodeIterator it = all.begin(), it_end = all.end(); for(; it != it_end; ++it) { FileNode n = *it; imagelist.push_back((string)n["image"]); FileNode nr = n["rect"]; roiList.push_back(Rect((int)nr[0], (int)nr[1], (int)nr[2], (int)nr[3])); FileNode np = n["pose"]; poseList.push_back(Vec6f((float)np[0], (float)np[1], (float)np[2], (float)np[3], (float)np[4], (float)np[5])); } return true; } static bool writeModelViews(const string& filename, const vector& box, const vector& imagelist, const vector& roiList, const vector& poseList) { FileStorage fs(filename, FileStorage::WRITE); if( !fs.isOpened() ) return false; fs << "box" << "[:"; fs << box << "]" << "views" << "["; size_t i, nviews = imagelist.size(); CV_Assert( nviews == roiList.size() && nviews == poseList.size() ); for( i = 0; i < nviews; i++ ) { Rect r = roiList[i]; Vec6f p = poseList[i]; fs << "{" << "image" << imagelist[i] << "roi" << "[:" << r.x << r.y << r.width << r.height << "]" << "pose" << "[:" << p[0] << p[1] << p[2] << p[3] << p[4] << p[5] << "]" << "}"; } fs << "]"; return true; } static bool readStringList( const string& filename, vector& l ) { l.resize(0); FileStorage fs(filename, FileStorage::READ); if( !fs.isOpened() ) return false; FileNode n = fs.getFirstTopLevelNode(); if( n.type() != FileNode::SEQ ) return false; FileNodeIterator it = n.begin(), it_end = n.end(); for( ; it != it_end; ++it ) l.push_back((string)*it); return true; } int main(int argc, char** argv) { const char* help = "Usage: select3dobj -w= -h= [-s=]\n" "\t-i= -o= [video_filename/cameraId]\n"; const char* screen_help = "Actions: \n" "\tSelect object as 3D box with the mouse. That's it\n" "\tESC - Reset the selection\n" "\tSPACE - Skip the frame; move to the next frame (not in video mode)\n" "\tENTER - Confirm the selection. Grab next object in video mode.\n" "\tq - Exit the program\n"; cv::CommandLineParser parser(argc, argv, "{help h||}{w||}{h||}{s|1|}{i||}{o||}{@input|0|}"); if (parser.has("help")) { puts(helphelp); puts(help); return 0; } string intrinsicsFilename; string outprefix = ""; string inputName = ""; int cameraId = 0; Size boardSize; double squareSize; vector imageList; intrinsicsFilename = parser.get("i"); outprefix = parser.get("o"); boardSize.width = parser.get("w"); boardSize.height = parser.get("h"); squareSize = parser.get("s"); if ( parser.get("@input").size() == 1 && isdigit(parser.get("@input")[0]) ) cameraId = parser.get("@input"); else inputName = parser.get("@input"); if (!parser.check()) { puts(help); parser.printErrors(); return 0; } if ( boardSize.width <= 0 ) { printf("Incorrect -w parameter (must be a positive integer)\n"); puts(help); return 0; } if ( boardSize.height <= 0 ) { printf("Incorrect -h parameter (must be a positive integer)\n"); puts(help); return 0; } if ( squareSize <= 0 ) { printf("Incorrect -s parameter (must be a positive real number)\n"); puts(help); return 0; } Mat cameraMatrix, distCoeffs; Size calibratedImageSize; readCameraMatrix(intrinsicsFilename, cameraMatrix, distCoeffs, calibratedImageSize ); VideoCapture capture; if( !inputName.empty() ) { if( !readStringList(inputName, imageList) && !capture.open(inputName)) { fprintf( stderr, "The input file could not be opened\n" ); return -1; } } else capture.open(cameraId); if( !capture.isOpened() && imageList.empty() ) return fprintf( stderr, "Could not initialize video capture\n" ), -2; const char* outbarename = 0; { outbarename = strrchr(outprefix.c_str(), '/'); const char* tmp = strrchr(outprefix.c_str(), '\\'); char cmd[1000]; sprintf(cmd, "mkdir %s", outprefix.c_str()); if( tmp && tmp > outbarename ) outbarename = tmp; if( outbarename ) { cmd[6 + outbarename - outprefix.c_str()] = '\0'; int result = system(cmd); CV_Assert(result == 0); outbarename++; } else outbarename = outprefix.c_str(); } Mat frame, shownFrame, selectedObjFrame, mapxy; namedWindow("View", 1); namedWindow("Selected Object", 1); setMouseCallback("View", onMouse, 0); bool boardFound = false; string indexFilename = format("%s_index.yml", outprefix.c_str()); vector capturedImgList; vector roiList; vector poseList; vector box, boardPoints; readModelViews(indexFilename, box, capturedImgList, roiList, poseList); calcChessboardCorners(boardSize, (float)squareSize, boardPoints); int frameIdx = 0; bool grabNext = !imageList.empty(); puts(screen_help); for(int i = 0;;i++) { Mat frame0; if( !imageList.empty() ) { if( i < (int)imageList.size() ) frame0 = imread(string(imageList[i]), 1); } else capture >> frame0; if( frame0.empty() ) break; if( frame.empty() ) { if( frame0.size() != calibratedImageSize ) { double sx = (double)frame0.cols/calibratedImageSize.width; double sy = (double)frame0.rows/calibratedImageSize.height; // adjust the camera matrix for the new resolution cameraMatrix.at(0,0) *= sx; cameraMatrix.at(0,2) *= sx; cameraMatrix.at(1,1) *= sy; cameraMatrix.at(1,2) *= sy; } Mat dummy; initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(), cameraMatrix, frame0.size(), CV_32FC2, mapxy, dummy ); distCoeffs = Mat::zeros(5, 1, CV_64F); } remap(frame0, frame, mapxy, Mat(), INTER_LINEAR); vector foundBoardCorners; boardFound = findChessboardCorners(frame, boardSize, foundBoardCorners); Mat rvec, tvec; if( boardFound ) solvePnP(Mat(boardPoints), Mat(foundBoardCorners), cameraMatrix, distCoeffs, rvec, tvec, false); frame.copyTo(shownFrame); drawChessboardCorners(shownFrame, boardSize, Mat(foundBoardCorners), boardFound); selectedObjFrame = Mat::zeros(frame.size(), frame.type()); if( boardFound && grabNext ) { if( box.empty() ) { int code = select3DBox("View", "Selected Object", frame, cameraMatrix, rvec, tvec, box); if( code == -100 ) break; } if( !box.empty() ) { Rect r = extract3DBox(frame, shownFrame, selectedObjFrame, cameraMatrix, rvec, tvec, box, 4, true); if( r.area() ) { const int maxFrameIdx = 10000; char path[1000]; for(;frameIdx < maxFrameIdx;frameIdx++) { sprintf(path, "%s%04d.jpg", outprefix.c_str(), frameIdx); FILE* f = fopen(path, "rb"); if( !f ) break; fclose(f); } if( frameIdx == maxFrameIdx ) { printf("Can not save the image as %s<...>.jpg", outprefix.c_str()); break; } imwrite(path, selectedObjFrame(r)); capturedImgList.push_back(string(path)); roiList.push_back(r); float p[6]; Mat RV(3, 1, CV_32F, p), TV(3, 1, CV_32F, p+3); rvec.convertTo(RV, RV.type()); tvec.convertTo(TV, TV.type()); poseList.push_back(Vec6f(p[0], p[1], p[2], p[3], p[4], p[5])); } } grabNext = !imageList.empty(); } imshow("View", shownFrame); imshow("Selected Object", selectedObjFrame); int c = waitKey(imageList.empty() && !box.empty() ? 30 : 300); if( c == 'q' || c == 'Q' ) break; if( c == '\r' || c == '\n' ) grabNext = true; } writeModelViews(indexFilename, box, capturedImgList, roiList, poseList); return 0; }