// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" namespace opencv_test { namespace { using cv::ml::TrainData; using cv::ml::EM; using cv::ml::KNearest; TEST(ML_KNearest, accuracy) { int sizesArr[] = { 500, 700, 800 }; int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2]; Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels; vector sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); Mat means; vector covs; defaultDistribs( means, covs ); generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); Mat testData( pointsCount, 2, CV_32FC1 ); Mat testLabels; generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); { SCOPED_TRACE("Default"); Mat bestLabels; float err = 1000; Ptr knn = KNearest::create(); knn->train(trainData, ml::ROW_SAMPLE, trainLabels); knn->findNearest(testData, 4, bestLabels); EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true )); EXPECT_LE(err, 0.01f); } { SCOPED_TRACE("KDTree"); Mat neighborIndexes; float err = 1000; Ptr knn = KNearest::create(); knn->setAlgorithmType(KNearest::KDTREE); knn->train(trainData, ml::ROW_SAMPLE, trainLabels); knn->findNearest(testData, 4, neighborIndexes); Mat bestLabels; // The output of the KDTree are the neighbor indexes, not actual class labels // so we need to do some extra work to get actual predictions for(int row_num = 0; row_num < neighborIndexes.rows; ++row_num){ vector labels; for(int index = 0; index < neighborIndexes.row(row_num).cols; ++index) { labels.push_back(trainLabels.at(neighborIndexes.row(row_num).at(0, index) , 0)); } // computing the mode of the output class predictions to determine overall prediction std::vector histogram(3,0); for( int i=0; i<3; ++i ) ++histogram[ static_cast(labels[i]) ]; int bestLabel = static_cast(std::max_element( histogram.begin(), histogram.end() ) - histogram.begin()); bestLabels.push_back(bestLabel); } bestLabels.convertTo(bestLabels, testLabels.type()); EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true )); EXPECT_LE(err, 0.01f); } } TEST(ML_KNearest, regression_12347) { Mat xTrainData = (Mat_(5,2) << 1, 1.1, 1.1, 1, 2, 2, 2.1, 2, 2.1, 2.1); Mat yTrainLabels = (Mat_(5,1) << 1, 1, 2, 2, 2); Ptr knn = KNearest::create(); knn->train(xTrainData, ml::ROW_SAMPLE, yTrainLabels); Mat xTestData = (Mat_(2,2) << 1.1, 1.1, 2, 2.2); Mat zBestLabels, neighbours, dist; // check output shapes: int K = 16, Kexp = std::min(K, xTrainData.rows); knn->findNearest(xTestData, K, zBestLabels, neighbours, dist); EXPECT_EQ(xTestData.rows, zBestLabels.rows); EXPECT_EQ(neighbours.cols, Kexp); EXPECT_EQ(dist.cols, Kexp); // see if the result is still correct: K = 2; knn->findNearest(xTestData, K, zBestLabels, neighbours, dist); EXPECT_EQ(1, zBestLabels.at(0,0)); EXPECT_EQ(2, zBestLabels.at(1,0)); } TEST(ML_KNearest, bug_11877) { Mat trainData = (Mat_(5,2) << 3, 3, 3, 3, 4, 4, 4, 4, 4, 4); Mat trainLabels = (Mat_(5,1) << 0, 0, 1, 1, 1); Ptr knnKdt = KNearest::create(); knnKdt->setAlgorithmType(KNearest::KDTREE); knnKdt->setIsClassifier(true); knnKdt->train(trainData, ml::ROW_SAMPLE, trainLabels); Mat testData = (Mat_(2,2) << 3.1, 3.1, 4, 4.1); Mat testLabels = (Mat_(2,1) << 0, 1); Mat result; knnKdt->findNearest(testData, 1, result); EXPECT_EQ(1, int(result.at(0, 0))); EXPECT_EQ(2, int(result.at(1, 0))); EXPECT_EQ(0, trainLabels.at(result.at(0, 0), 0)); } }} // namespace