/********************************************************************* * Software License Agreement (BSD License) * * Copyright (c) 2008-2011, William Lucas * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Willow Garage nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *********************************************************************/ #include "precomp.hpp" #include namespace cv { static void magSpectrums( InputArray _src, OutputArray _dst) { Mat src = _src.getMat(); int depth = src.depth(), cn = src.channels(), type = src.type(); int rows = src.rows, cols = src.cols; int j, k; CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 ); if(src.depth() == CV_32F) _dst.create( src.rows, src.cols, CV_32FC1 ); else _dst.create( src.rows, src.cols, CV_64FC1 ); Mat dst = _dst.getMat(); bool is_1d = (rows == 1 || (cols == 1 && src.isContinuous() && dst.isContinuous())); if( is_1d ) cols = cols + rows - 1, rows = 1; int ncols = cols*cn; int j0 = cn == 1; int j1 = ncols - (cols % 2 == 0 && cn == 1); if( depth == CV_32F ) { const float* dataSrc = (const float*)src.data; float* dataDst = (float*)dst.data; size_t stepSrc = src.step/sizeof(dataSrc[0]); size_t stepDst = dst.step/sizeof(dataDst[0]); if( !is_1d && cn == 1 ) { for( k = 0; k < (cols % 2 ? 1 : 2); k++ ) { if( k == 1 ) dataSrc += cols - 1, dataDst += cols - 1; dataDst[0] = dataSrc[0]*dataSrc[0]; if( rows % 2 == 0 ) dataDst[(rows-1)*stepDst] = dataSrc[(rows-1)*stepSrc]*dataSrc[(rows-1)*stepSrc]; for( j = 1; j <= rows - 2; j += 2 ) { dataDst[j*stepDst] = (double)dataSrc[j*stepSrc]*dataSrc[j*stepSrc] + (double)dataSrc[(j+1)*stepSrc]*dataSrc[(j+1)*stepSrc]; } if( k == 1 ) dataSrc -= cols - 1, dataDst -= cols - 1; } } for( ; rows--; dataSrc += stepSrc, dataDst += stepDst ) { if( is_1d && cn == 1 ) { dataDst[0] = dataSrc[0]*dataSrc[0]; if( cols % 2 == 0 ) dataDst[j1] = dataSrc[j1]*dataSrc[j1]; } for( j = j0; j < j1; j += 2 ) { dataDst[j] = (double)dataSrc[j]*dataSrc[j] + (double)dataSrc[j+1]*dataSrc[j+1]; } } } else { const double* dataSrc = (const double*)src.data; double* dataDst = (double*)dst.data; size_t stepSrc = src.step/sizeof(dataSrc[0]); size_t stepDst = dst.step/sizeof(dataDst[0]); if( !is_1d && cn == 1 ) { for( k = 0; k < (cols % 2 ? 1 : 2); k++ ) { if( k == 1 ) dataSrc += cols - 1, dataDst += cols - 1; dataDst[0] = dataSrc[0]*dataSrc[0]; if( rows % 2 == 0 ) dataDst[(rows-1)*stepDst] = dataSrc[(rows-1)*stepSrc]*dataSrc[(rows-1)*stepSrc]; for( j = 1; j <= rows - 2; j += 2 ) { dataDst[j*stepDst] = dataSrc[j*stepSrc]*dataSrc[j*stepSrc] + dataSrc[(j+1)*stepSrc]*dataSrc[(j+1)*stepSrc]; } if( k == 1 ) dataSrc -= cols - 1, dataDst -= cols - 1; } } for( ; rows--; dataSrc += stepSrc, dataDst += stepDst ) { if( is_1d && cn == 1 ) { dataDst[0] = dataSrc[0]*dataSrc[0]; if( cols % 2 == 0 ) dataDst[j1] = dataSrc[j1]*dataSrc[j1]; } for( j = j0; j < j1; j += 2 ) { dataDst[j] = dataSrc[j]*dataSrc[j] + dataSrc[j+1]*dataSrc[j+1]; } } } // do batch sqrt to use SSE optimizations... cv::sqrt(dst, dst); } static void divSpectrums( InputArray _srcA, InputArray _srcB, OutputArray _dst, int flags, bool conjB) { Mat srcA = _srcA.getMat(), srcB = _srcB.getMat(); int depth = srcA.depth(), cn = srcA.channels(), type = srcA.type(); int rows = srcA.rows, cols = srcA.cols; int j, k; CV_Assert( type == srcB.type() && srcA.size() == srcB.size() ); CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 ); _dst.create( srcA.rows, srcA.cols, type ); Mat dst = _dst.getMat(); bool is_1d = (flags & DFT_ROWS) || (rows == 1 || (cols == 1 && srcA.isContinuous() && srcB.isContinuous() && dst.isContinuous())); if( is_1d && !(flags & DFT_ROWS) ) cols = cols + rows - 1, rows = 1; int ncols = cols*cn; int j0 = cn == 1; int j1 = ncols - (cols % 2 == 0 && cn == 1); if( depth == CV_32F ) { const float* dataA = (const float*)srcA.data; const float* dataB = (const float*)srcB.data; float* dataC = (float*)dst.data; float eps = FLT_EPSILON; // prevent div0 problems size_t stepA = srcA.step/sizeof(dataA[0]); size_t stepB = srcB.step/sizeof(dataB[0]); size_t stepC = dst.step/sizeof(dataC[0]); if( !is_1d && cn == 1 ) { for( k = 0; k < (cols % 2 ? 1 : 2); k++ ) { if( k == 1 ) dataA += cols - 1, dataB += cols - 1, dataC += cols - 1; dataC[0] = dataA[0] / dataB[0]; if( rows % 2 == 0 ) dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA] / dataB[(rows-1)*stepB]; if( !conjB ) for( j = 1; j <= rows - 2; j += 2 ) { double denom = (double)dataB[j*stepB]*dataB[j*stepB] + (double)dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + (double)eps; double re = (double)dataA[j*stepA]*dataB[j*stepB] + (double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB]; double im = (double)dataA[(j+1)*stepA]*dataB[j*stepB] - (double)dataA[j*stepA]*dataB[(j+1)*stepB]; dataC[j*stepC] = (float)(re / denom); dataC[(j+1)*stepC] = (float)(im / denom); } else for( j = 1; j <= rows - 2; j += 2 ) { double denom = (double)dataB[j*stepB]*dataB[j*stepB] + (double)dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + (double)eps; double re = (double)dataA[j*stepA]*dataB[j*stepB] - (double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB]; double im = (double)dataA[(j+1)*stepA]*dataB[j*stepB] + (double)dataA[j*stepA]*dataB[(j+1)*stepB]; dataC[j*stepC] = (float)(re / denom); dataC[(j+1)*stepC] = (float)(im / denom); } if( k == 1 ) dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1; } } for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC ) { if( is_1d && cn == 1 ) { dataC[0] = dataA[0] / dataB[0]; if( cols % 2 == 0 ) dataC[j1] = dataA[j1] / dataB[j1]; } if( !conjB ) for( j = j0; j < j1; j += 2 ) { double denom = (double)(dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps); double re = (double)(dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1]); double im = (double)(dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1]); dataC[j] = (float)(re / denom); dataC[j+1] = (float)(im / denom); } else for( j = j0; j < j1; j += 2 ) { double denom = (double)(dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps); double re = (double)(dataA[j]*dataB[j] - dataA[j+1]*dataB[j+1]); double im = (double)(dataA[j+1]*dataB[j] + dataA[j]*dataB[j+1]); dataC[j] = (float)(re / denom); dataC[j+1] = (float)(im / denom); } } } else { const double* dataA = (const double*)srcA.data; const double* dataB = (const double*)srcB.data; double* dataC = (double*)dst.data; double eps = DBL_EPSILON; // prevent div0 problems size_t stepA = srcA.step/sizeof(dataA[0]); size_t stepB = srcB.step/sizeof(dataB[0]); size_t stepC = dst.step/sizeof(dataC[0]); if( !is_1d && cn == 1 ) { for( k = 0; k < (cols % 2 ? 1 : 2); k++ ) { if( k == 1 ) dataA += cols - 1, dataB += cols - 1, dataC += cols - 1; dataC[0] = dataA[0] / dataB[0]; if( rows % 2 == 0 ) dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA] / dataB[(rows-1)*stepB]; if( !conjB ) for( j = 1; j <= rows - 2; j += 2 ) { double denom = dataB[j*stepB]*dataB[j*stepB] + dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + eps; double re = dataA[j*stepA]*dataB[j*stepB] + dataA[(j+1)*stepA]*dataB[(j+1)*stepB]; double im = dataA[(j+1)*stepA]*dataB[j*stepB] - dataA[j*stepA]*dataB[(j+1)*stepB]; dataC[j*stepC] = re / denom; dataC[(j+1)*stepC] = im / denom; } else for( j = 1; j <= rows - 2; j += 2 ) { double denom = dataB[j*stepB]*dataB[j*stepB] + dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + eps; double re = dataA[j*stepA]*dataB[j*stepB] - dataA[(j+1)*stepA]*dataB[(j+1)*stepB]; double im = dataA[(j+1)*stepA]*dataB[j*stepB] + dataA[j*stepA]*dataB[(j+1)*stepB]; dataC[j*stepC] = re / denom; dataC[(j+1)*stepC] = im / denom; } if( k == 1 ) dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1; } } for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC ) { if( is_1d && cn == 1 ) { dataC[0] = dataA[0] / dataB[0]; if( cols % 2 == 0 ) dataC[j1] = dataA[j1] / dataB[j1]; } if( !conjB ) for( j = j0; j < j1; j += 2 ) { double denom = dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps; double re = dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1]; double im = dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1]; dataC[j] = re / denom; dataC[j+1] = im / denom; } else for( j = j0; j < j1; j += 2 ) { double denom = dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps; double re = dataA[j]*dataB[j] - dataA[j+1]*dataB[j+1]; double im = dataA[j+1]*dataB[j] + dataA[j]*dataB[j+1]; dataC[j] = re / denom; dataC[j+1] = im / denom; } } } } static void fftShift(InputOutputArray _out) { Mat out = _out.getMat(); vector planes; split(out, planes); int xMid = out.cols >> 1; int yMid = out.rows >> 1; for(size_t i = 0; i < planes.size(); i++) { // perform quadrant swaps... Mat tmp; Mat q0(planes[i], Rect(0, 0, xMid, yMid)); Mat q1(planes[i], Rect(xMid, 0, xMid, yMid)); Mat q2(planes[i], Rect(0, yMid, xMid, yMid)); Mat q3(planes[i], Rect(xMid, yMid, xMid, yMid)); q0.copyTo(tmp); q3.copyTo(q0); tmp.copyTo(q3); q1.copyTo(tmp); q2.copyTo(q1); tmp.copyTo(q2); } merge(planes, out); } Point2d weightedCentroid(InputArray _src, cv::Point peakLocation, cv::Size weightBoxSize) { Mat src = _src.getMat(); int type = src.type(); CV_Assert( type == CV_32FC1 || type == CV_64FC1 ); int minr = peakLocation.y - (weightBoxSize.height >> 1); int maxr = peakLocation.y + (weightBoxSize.height >> 1); int minc = peakLocation.x - (weightBoxSize.width >> 1); int maxc = peakLocation.x + (weightBoxSize.width >> 1); Point2d centroid; double sumIntensity = 0.0; // clamp the values to min and max if needed. if(minr < 0) { minr = 0; } if(minc < 0) { minc = 0; } if(maxr > src.rows - 1) { maxr = src.rows - 1; } if(maxc > src.cols - 1) { maxc = src.cols - 1; } if(type == CV_32FC1) { const float* dataIn = (const float*)src.data; dataIn += minr*src.cols; for(int y = minr; y <= maxr; y++) { for(int x = minc; x <= maxc; x++) { centroid.x += (double)x*dataIn[x]; centroid.y += (double)y*dataIn[x]; sumIntensity += (double)dataIn[x]; } dataIn += src.cols; } } else { const double* dataIn = (const double*)src.data; dataIn += minr*src.cols; for(int y = minr; y <= maxr; y++) { for(int x = minc; x <= maxc; x++) { centroid.x += (double)x*dataIn[x]; centroid.y += (double)y*dataIn[x]; sumIntensity += dataIn[x]; } dataIn += src.cols; } } sumIntensity += DBL_EPSILON; // prevent div0 problems... centroid.x /= sumIntensity; centroid.y /= sumIntensity; return centroid; } } cv::Point2d cv::phaseCorrelate(InputArray _src1, InputArray _src2, InputArray _window) { Mat src1 = _src1.getMat(); Mat src2 = _src2.getMat(); Mat window = _window.getMat(); CV_Assert( src1.type() == src2.type()); CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_64FC1 ); CV_Assert( src1.size == src2.size); if(!window.empty()) { CV_Assert( src1.type() == window.type()); CV_Assert( src1.size == window.size); } int M = getOptimalDFTSize(src1.rows); int N = getOptimalDFTSize(src1.cols); Mat padded1, padded2, paddedWin; if(M != src1.rows || N != src1.cols) { copyMakeBorder(src1, padded1, 0, M - src1.rows, 0, N - src1.cols, BORDER_CONSTANT, Scalar::all(0)); copyMakeBorder(src2, padded2, 0, M - src2.rows, 0, N - src2.cols, BORDER_CONSTANT, Scalar::all(0)); if(!window.empty()) { copyMakeBorder(window, paddedWin, 0, M - window.rows, 0, N - window.cols, BORDER_CONSTANT, Scalar::all(0)); } } else { padded1 = src1; padded2 = src2; paddedWin = window; } Mat FFT1, FFT2, P, Pm, C; // perform window multiplication if available if(!paddedWin.empty()) { // apply window to both images before proceeding... multiply(paddedWin, padded1, padded1); multiply(paddedWin, padded2, padded2); } // execute phase correlation equation // Reference: http://en.wikipedia.org/wiki/Phase_correlation dft(padded1, FFT1, DFT_REAL_OUTPUT); dft(padded2, FFT2, DFT_REAL_OUTPUT); mulSpectrums(FFT1, FFT2, P, 0, true); magSpectrums(P, Pm); divSpectrums(P, Pm, C, 0, false); // FF* / |FF*| (phase correlation equation completed here...) idft(C, C); // gives us the nice peak shift location... fftShift(C); // shift the energy to the center of the frame. // locate the highest peak Point peakLoc; minMaxLoc(C, NULL, NULL, NULL, &peakLoc); // get the phase shift with sub-pixel accuracy, 5x5 window seems about right here... Point2d t; t = weightedCentroid(C, peakLoc, Size(5, 5)); // adjust shift relative to image center... Point2d center((double)src1.cols / 2.0, (double)src1.rows / 2.0); return (center - t); } void cv::createHanningWindow(OutputArray _dst, cv::Size winSize, int type) { CV_Assert( type == CV_32FC1 || type == CV_64FC1 ); _dst.create(winSize, type); Mat dst = _dst.getMat(); int rows = dst.rows; int cols = dst.cols; if(dst.depth() == CV_32F) { float* dstData = (float*)dst.data; for(int i = 0; i < rows; i++) { double wr = 0.5 * (1.0f - cos(2.0f * CV_PI * (double)i / (double)(rows - 1))); for(int j = 0; j < cols; j++) { double wc = 0.5 * (1.0f - cos(2.0f * CV_PI * (double)j / (double)(cols - 1))); dstData[i*cols + j] = (float)(wr * wc); } } // perform batch sqrt for SSE performance gains cv::sqrt(dst, dst); } else { double* dstData = (double*)dst.data; for(int i = 0; i < rows; i++) { double wr = 0.5 * (1.0 - cos(2.0 * CV_PI * (double)i / (double)(rows - 1))); for(int j = 0; j < cols; j++) { double wc = 0.5 * (1.0 - cos(2.0 * CV_PI * (double)j / (double)(cols - 1))); dstData[i*cols + j] = wr * wc; } } // perform batch sqrt for SSE performance gains cv::sqrt(dst, dst); } }