/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // (3-clause BSD License) // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * Neither the names of the copyright holders nor the names of the contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall copyright holders or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #include #include namespace opencv_test { namespace { template static std::string _tf(TString filename) { return (getOpenCVExtraDir() + "/dnn/") + filename; } TEST(Test_Darknet, read_tiny_yolo_voc) { Net net = readNetFromDarknet(_tf("tiny-yolo-voc.cfg")); ASSERT_FALSE(net.empty()); } TEST(Test_Darknet, read_yolo_voc) { Net net = readNetFromDarknet(_tf("yolo-voc.cfg")); ASSERT_FALSE(net.empty()); } OCL_TEST(Reproducibility_TinyYoloVoc, Accuracy) { Net net; { const string cfg = findDataFile("dnn/tiny-yolo-voc.cfg", false); const string model = findDataFile("dnn/tiny-yolo-voc.weights", false); net = readNetFromDarknet(cfg, model); ASSERT_FALSE(net.empty()); } net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(DNN_TARGET_OPENCL); // dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format Mat sample = imread(_tf("dog416.png")); ASSERT_TRUE(!sample.empty()); Size inputSize(416, 416); if (sample.size() != inputSize) resize(sample, sample, inputSize); net.setInput(blobFromImage(sample, 1 / 255.F), "data"); Mat out = net.forward("detection_out"); Mat detection; const float confidenceThreshold = 0.24; for (int i = 0; i < out.rows; i++) { const int probability_index = 5; const int probability_size = out.cols - probability_index; float *prob_array_ptr = &out.at(i, probability_index); size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; float confidence = out.at(i, (int)objectClass + probability_index); if (confidence > confidenceThreshold) detection.push_back(out.row(i)); } // obtained by: ./darknet detector test ./cfg/voc.data ./cfg/tiny-yolo-voc.cfg ./tiny-yolo-voc.weights -thresh 0.24 ./dog416.png // There are 2 objects (6-car, 11-dog) with 25 values for each: // { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] } float ref_array[] = { 0.736762F, 0.239551F, 0.315440F, 0.160779F, 0.761977F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.761967F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.287486F, 0.653731F, 0.315579F, 0.534527F, 0.782737F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.780595F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F }; const int number_of_objects = 2; Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); normAssert(ref, detection); } TEST(Reproducibility_TinyYoloVoc, Accuracy) { Net net; { const string cfg = findDataFile("dnn/tiny-yolo-voc.cfg", false); const string model = findDataFile("dnn/tiny-yolo-voc.weights", false); net = readNetFromDarknet(cfg, model); ASSERT_FALSE(net.empty()); } // dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format Mat sample = imread(_tf("dog416.png")); ASSERT_TRUE(!sample.empty()); Size inputSize(416, 416); if (sample.size() != inputSize) resize(sample, sample, inputSize); net.setInput(blobFromImage(sample, 1 / 255.F), "data"); Mat out = net.forward("detection_out"); Mat detection; const float confidenceThreshold = 0.24; for (int i = 0; i < out.rows; i++) { const int probability_index = 5; const int probability_size = out.cols - probability_index; float *prob_array_ptr = &out.at(i, probability_index); size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; float confidence = out.at(i, (int)objectClass + probability_index); if (confidence > confidenceThreshold) detection.push_back(out.row(i)); } // obtained by: ./darknet detector test ./cfg/voc.data ./cfg/tiny-yolo-voc.cfg ./tiny-yolo-voc.weights -thresh 0.24 ./dog416.png // There are 2 objects (6-car, 11-dog) with 25 values for each: // { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] } float ref_array[] = { 0.736762F, 0.239551F, 0.315440F, 0.160779F, 0.761977F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.761967F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.287486F, 0.653731F, 0.315579F, 0.534527F, 0.782737F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.780595F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F }; const int number_of_objects = 2; Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); normAssert(ref, detection); } OCL_TEST(Reproducibility_YoloVoc, Accuracy) { Net net; { const string cfg = findDataFile("dnn/yolo-voc.cfg", false); const string model = findDataFile("dnn/yolo-voc.weights", false); net = readNetFromDarknet(cfg, model); ASSERT_FALSE(net.empty()); } net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(DNN_TARGET_OPENCL); // dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format Mat sample = imread(_tf("dog416.png")); ASSERT_TRUE(!sample.empty()); Size inputSize(416, 416); if (sample.size() != inputSize) resize(sample, sample, inputSize); net.setInput(blobFromImage(sample, 1 / 255.F), "data"); Mat out = net.forward("detection_out"); Mat detection; const float confidenceThreshold = 0.24; for (int i = 0; i < out.rows; i++) { const int probability_index = 5; const int probability_size = out.cols - probability_index; float *prob_array_ptr = &out.at(i, probability_index); size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; float confidence = out.at(i, (int)objectClass + probability_index); if (confidence > confidenceThreshold) detection.push_back(out.row(i)); } // obtained by: ./darknet detector test ./cfg/voc.data ./cfg/yolo-voc.cfg ./yolo-voc.weights -thresh 0.24 ./dog416.png // There are 3 objects (6-car, 1-bicycle, 11-dog) with 25 values for each: // { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] } float ref_array[] = { 0.740161F, 0.214100F, 0.325575F, 0.173418F, 0.750769F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.750469F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.501618F, 0.504757F, 0.461713F, 0.481310F, 0.783550F, 0.000000F, 0.780879F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.279968F, 0.638651F, 0.282737F, 0.600284F, 0.901864F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.901615F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F }; const int number_of_objects = 3; Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); normAssert(ref, detection); } TEST(Reproducibility_YoloVoc, Accuracy) { Net net; { const string cfg = findDataFile("dnn/yolo-voc.cfg", false); const string model = findDataFile("dnn/yolo-voc.weights", false); net = readNetFromDarknet(cfg, model); ASSERT_FALSE(net.empty()); } // dog416.png is dog.jpg that resized to 416x416 in the lossless PNG format Mat sample = imread(_tf("dog416.png")); ASSERT_TRUE(!sample.empty()); Size inputSize(416, 416); if (sample.size() != inputSize) resize(sample, sample, inputSize); net.setInput(blobFromImage(sample, 1 / 255.F), "data"); Mat out = net.forward("detection_out"); Mat detection; const float confidenceThreshold = 0.24; for (int i = 0; i < out.rows; i++) { const int probability_index = 5; const int probability_size = out.cols - probability_index; float *prob_array_ptr = &out.at(i, probability_index); size_t objectClass = std::max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; float confidence = out.at(i, (int)objectClass + probability_index); if (confidence > confidenceThreshold) detection.push_back(out.row(i)); } // obtained by: ./darknet detector test ./cfg/voc.data ./cfg/yolo-voc.cfg ./yolo-voc.weights -thresh 0.24 ./dog416.png // There are 3 objects (6-car, 1-bicycle, 11-dog) with 25 values for each: // { relative_center_x, relative_center_y, relative_width, relative_height, unused_t0, probability_for_each_class[20] } float ref_array[] = { 0.740161F, 0.214100F, 0.325575F, 0.173418F, 0.750769F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.750469F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.501618F, 0.504757F, 0.461713F, 0.481310F, 0.783550F, 0.000000F, 0.780879F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.279968F, 0.638651F, 0.282737F, 0.600284F, 0.901864F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.901615F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F, 0.000000F }; const int number_of_objects = 3; Mat ref(number_of_objects, sizeof(ref_array) / (number_of_objects * sizeof(float)), CV_32FC1, &ref_array); normAssert(ref, detection); } }} // namespace