/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #include "npy_blob.hpp" #include #include #include // CV_DNN_REGISTER_LAYER_CLASS #ifdef HAVE_INF_ENGINE #include #endif namespace opencv_test { namespace { template static String _tf(TString filename) { String basetestdir = getOpenCVExtraDir(); size_t len = basetestdir.size(); if(len > 0 && basetestdir[len-1] != '/' && basetestdir[len-1] != '\\') return (basetestdir + "/dnn/layers") + filename; return (basetestdir + "dnn/layers/") + filename; } void runLayer(Ptr layer, std::vector &inpBlobs, std::vector &outBlobs) { size_t ninputs = inpBlobs.size(); std::vector inp(ninputs), outp, intp; std::vector inputs, outputs, internals; for (size_t i = 0; i < ninputs; i++) { inp[i] = inpBlobs[i].clone(); inputs.push_back(shape(inp[i])); } layer->getMemoryShapes(inputs, 0, outputs, internals); for (size_t i = 0; i < outputs.size(); i++) { outp.push_back(Mat(outputs[i], CV_32F)); } for (size_t i = 0; i < internals.size(); i++) { intp.push_back(Mat(internals[i], CV_32F)); } layer->finalize(inp, outp); layer->forward(inp, outp, intp); size_t noutputs = outp.size(); outBlobs.resize(noutputs); for (size_t i = 0; i < noutputs; i++) outBlobs[i] = outp[i]; } class Test_Caffe_layers : public DNNTestLayer { public: void testLayerUsingCaffeModels(const String& basename, bool useCaffeModel = false, bool useCommonInputBlob = true, double l1 = 0.0, double lInf = 0.0, int numInps = 1, int numOuts = 1) { CV_Assert_N(numInps >= 1, numInps <= 10, numOuts >= 1, numOuts <= 10); String prototxt = _tf(basename + ".prototxt"); String caffemodel = _tf(basename + ".caffemodel"); std::vector inps, refs, outs; if (numInps > 1) { for (int i = 0; i < numInps; i++) { String inpfile = _tf(basename + cv::format(".input_%d.npy", i)); inps.push_back(blobFromNPY(inpfile)); } } else { String inpfile = (useCommonInputBlob) ? _tf("blob.npy") : _tf(basename + ".input.npy"); inps.push_back(blobFromNPY(inpfile)); } if (numOuts > 1) { for (int i = 0; i < numOuts; i++) { String outfile = _tf(basename + cv::format("_%d.npy", i)); refs.push_back(blobFromNPY(outfile)); } } else { String outfile = _tf(basename + ".npy"); refs.push_back(blobFromNPY(outfile)); } Net net = readNetFromCaffe(prototxt, (useCaffeModel) ? caffemodel : String()); ASSERT_FALSE(net.empty()); checkBackend(&inps[0], &refs[0]); net.setPreferableBackend(backend); net.setPreferableTarget(target); String inp_name = "input"; if (numInps > 1) { for (int i = 0; i < numInps; i++) { net.setInput(inps[i], inp_name + cv::format("_%d", i)); } } else { net.setInput(inps.back(), inp_name); } net.forward(outs); for (int i = 0; i < refs.size(); i++) { normAssert(refs[i], outs[i], "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf); } } }; TEST_P(Test_Caffe_layers, Softmax) { testLayerUsingCaffeModels("layer_softmax"); } TEST_P(Test_Caffe_layers, LRN) { double l1 = 0.0, lInf = 0.0; // The OpenCL kernels use the native_ math functions which have // implementation defined accuracy, so we use relaxed thresholds. See // https://github.com/opencv/opencv/issues/9821 for more details. if (target == DNN_TARGET_OPENCL) { l1 = 0.01; lInf = 0.01; } testLayerUsingCaffeModels("layer_lrn_spatial", false, true, l1, lInf); testLayerUsingCaffeModels("layer_lrn_channels", false, true, l1, lInf); } TEST_P(Test_Caffe_layers, Convolution) { testLayerUsingCaffeModels("layer_convolution", true); } TEST_P(Test_Caffe_layers, DeConvolution) { if(target == DNN_TARGET_CUDA_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16); testLayerUsingCaffeModels("layer_deconvolution", true, false); } TEST_P(Test_Caffe_layers, InnerProduct) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // IE exception: Ngraph operation Reshape with name Reshape_4219609 has dynamic output shape on 0 port, but CPU plug-in supports only static shape if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testLayerUsingCaffeModels("layer_inner_product", true); } TEST_P(Test_Caffe_layers, Pooling_max) { testLayerUsingCaffeModels("layer_pooling_max"); } TEST_P(Test_Caffe_layers, Pooling_ave) { testLayerUsingCaffeModels("layer_pooling_ave"); } TEST_P(Test_Caffe_layers, MVN) { if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); /* MVN is unsupported */ testLayerUsingCaffeModels("layer_mvn"); } void testReshape(const MatShape& inputShape, const MatShape& targetShape, int axis = 0, int num_axes = -1, MatShape mask = MatShape()) { LayerParams params; params.set("axis", axis); params.set("num_axes", num_axes); if (!mask.empty()) { params.set("dim", DictValue::arrayInt(&mask[0], mask.size())); } Mat inp(inputShape.size(), &inputShape[0], CV_32F); std::vector inpVec(1, inp); std::vector outVec, intVec; Ptr rl = LayerFactory::createLayerInstance("Reshape", params); runLayer(rl, inpVec, outVec); Mat& out = outVec[0]; MatShape shape(out.size.p, out.size.p + out.dims); EXPECT_EQ(shape, targetShape); } TEST(Layer_Test_Reshape, Accuracy) { { int inp[] = {4, 3, 1, 2}; int out[] = {4, 3, 2}; testReshape(MatShape(inp, inp + 4), MatShape(out, out + 3), 2, 1); } { int inp[] = {1, 128, 4, 4}; int out[] = {1, 2048}; int mask[] = {-1, 2048}; testReshape(MatShape(inp, inp + 4), MatShape(out, out + 2), 0, -1, MatShape(mask, mask + 2)); } { int inp[] = {1, 2, 3}; int out[] = {3, 1, 2}; int mask[] = {3, 1, 2}; testReshape(MatShape(inp, inp + 3), MatShape(out, out + 3), 0, -1, MatShape(mask, mask + 3)); } } TEST_P(Test_Caffe_layers, BatchNorm) { testLayerUsingCaffeModels("layer_batch_norm", true); testLayerUsingCaffeModels("layer_batch_norm_local_stats", true, false); } TEST_P(Test_Caffe_layers, ReLU) { testLayerUsingCaffeModels("layer_relu"); } TEST_P(Test_Caffe_layers, Dropout) { testLayerUsingCaffeModels("layer_dropout"); } TEST_P(Test_Caffe_layers, Concat) { #if defined(INF_ENGINE_RELEASE) #if INF_ENGINE_VER_MAJOR_GE(2019010000) && INF_ENGINE_VER_MAJOR_LT(2019020000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #elif INF_ENGINE_VER_MAJOR_EQ(2019020000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif #if INF_ENGINE_VER_MAJOR_LT(2021040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif #endif testLayerUsingCaffeModels("layer_concat"); testLayerUsingCaffeModels("layer_concat_optim", true, false); testLayerUsingCaffeModels("layer_concat_shared_input", true, false); } TEST_P(Test_Caffe_layers, Fused_Concat) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); checkBackend(); // Test case // input // | // v // some_layer // | | // v v // concat Net net; int interLayer; { LayerParams lp; lp.type = "AbsVal"; lp.name = "someLayer"; interLayer = net.addLayerToPrev(lp.name, lp.type, lp); } { LayerParams lp; lp.set("axis", 1); lp.type = "Concat"; lp.name = "testConcat"; int id = net.addLayer(lp.name, lp.type, lp); net.connect(interLayer, 0, id, 0); net.connect(interLayer, 0, id, 1); } int shape[] = {1, 2, 3, 4}; Mat input(4, shape, CV_32F); randu(input, 0.0f, 1.0f); // [0, 1] to make AbsVal an identity transformation. net.setInput(input); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat out = net.forward(); normAssert(slice(out, Range::all(), Range(0, 2), Range::all(), Range::all()), input, "", default_l1, default_lInf); normAssert(slice(out, Range::all(), Range(2, 4), Range::all(), Range::all()), input, "", default_l1, default_lInf); } TEST_P(Test_Caffe_layers, Eltwise) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); testLayerUsingCaffeModels("layer_eltwise"); } TEST_P(Test_Caffe_layers, PReLU) { double lInf = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.021 : 0.0; testLayerUsingCaffeModels("layer_prelu", true, true, 0.0, lInf); } // TODO: fix an unstable test case TEST_P(Test_Caffe_layers, layer_prelu_fc) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); // Reference output values are in range [-0.0001, 10.3906] double l1 = (target == DNN_TARGET_MYRIAD) ? 0.005 : 0.0; double lInf = (target == DNN_TARGET_MYRIAD) ? 0.021 : 0.0; #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020040000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) { l1 = 0.006f; lInf = 0.05f; } if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) { l1 = 0.01f; lInf = 0.05f; } #endif testLayerUsingCaffeModels("layer_prelu_fc", true, false, l1, lInf); } TEST_P(Test_Caffe_layers, Reshape_Split_Slice) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt")); ASSERT_FALSE(net.empty()); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat input(6, 12, CV_32F); RNG rng(0); rng.fill(input, RNG::UNIFORM, -1, 1); net.setInput(input, "input"); Mat output = net.forward("output"); normAssert(input, output, "", default_l1, default_lInf); } TEST_P(Test_Caffe_layers, Conv_Elu) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE <= 2018050000 if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif Net net = readNetFromTensorflow(_tf("layer_elu_model.pb")); ASSERT_FALSE(net.empty()); Mat inp = blobFromNPY(_tf("layer_elu_in.npy")); Mat ref = blobFromNPY(_tf("layer_elu_out.npy")); net.setInput(inp, "input"); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat out = net.forward(); double l1 = default_l1, lInf = default_lInf; if (target == DNN_TARGET_CUDA_FP16) { l1 = 0.0002; lInf = 0.0005; } normAssert(ref, out, "", l1, lInf); } class Layer_LSTM_Test : public ::testing::Test { public: int numInp, numOut; Mat Wh, Wx, b, h, c; Ptr layer; std::vector inputs, outputs; Layer_LSTM_Test() {} void init(const MatShape &inpShape_, const MatShape &outShape_, bool produceCellOutput, bool useTimestampDim) { numInp = total(inpShape_); numOut = total(outShape_); Wh = Mat::ones(4 * numOut, numOut, CV_32F); Wx = Mat::ones(4 * numOut, numInp, CV_32F); b = Mat::ones(4 * numOut, 1, CV_32F); h = Mat::ones(4, numOut, CV_32F); c = Mat::ones(4, numOut, CV_32F); LayerParams lp; lp.blobs.resize(5); lp.blobs[0] = Wh; lp.blobs[1] = Wx; lp.blobs[2] = b; lp.blobs[3] = h; lp.blobs[4] = c; lp.set("produce_cell_output", produceCellOutput); lp.set("use_timestamp_dim", useTimestampDim); layer = LSTMLayer::create(lp); layer->setOutShape(outShape_); } }; TEST_F(Layer_LSTM_Test, get_set_test) { const int TN = 4; MatShape inpShape = shape(5, 3, 2); MatShape outShape = shape(3, 1, 2); MatShape inpResShape = concat(shape(TN), inpShape); MatShape outResShape = concat(shape(TN), outShape); init(inpShape, outShape, true, false); layer->setOutShape(outShape); Mat C((int)outResShape.size(), &outResShape[0], CV_32F); randu(C, -1., 1.); Mat H = C.clone(); randu(H, -1., 1.); Mat inp((int)inpResShape.size(), &inpResShape[0], CV_32F); randu(inp, -1., 1.); inputs.push_back(inp); runLayer(layer, inputs, outputs); EXPECT_EQ(2u, outputs.size()); print(outResShape, "outResShape"); print(shape(outputs[0]), "out0"); print(shape(outputs[0]), "out1"); EXPECT_EQ(outResShape, shape(outputs[0])); EXPECT_EQ(outResShape, shape(outputs[1])); EXPECT_EQ(0, layer->inputNameToIndex("x")); EXPECT_EQ(0, layer->outputNameToIndex("h")); EXPECT_EQ(1, layer->outputNameToIndex("c")); } TEST(Layer_LSTM_Test_Accuracy_with_, CaffeRecurrent) { LayerParams lp; lp.blobs.resize(5); lp.blobs[0] = blobFromNPY(_tf("lstm.prototxt.w_2.npy")); // Wh lp.blobs[1] = blobFromNPY(_tf("lstm.prototxt.w_0.npy")); // Wx lp.blobs[2] = blobFromNPY(_tf("lstm.prototxt.w_1.npy")); // bias lp.blobs[3] = Mat::zeros(2, 17, CV_32F); // h_0 lp.blobs[4] = Mat::zeros(2, 17, CV_32F); // c_0 Ptr layer = LSTMLayer::create(lp); Mat inp = blobFromNPY(_tf("recurrent.input.npy")); std::vector inputs(1, inp), outputs; runLayer(layer, inputs, outputs); Mat h_t_reference = blobFromNPY(_tf("lstm.prototxt.h_1.npy")); normAssert(h_t_reference, outputs[0]); } TEST(Layer_LSTM_Test_Accuracy_with_, HiddenParams) { Mat Wx = blobFromNPY(_tf("lstm.hidden.W.npy")); Mat Wh = blobFromNPY(_tf("lstm.hidden.R.npy")); Mat b = blobFromNPY(_tf("lstm.hidden.B.npy")); Mat h0 = blobFromNPY(_tf("lstm.hidden.h0.npy")); Mat c0 = blobFromNPY(_tf("lstm.hidden.c0.npy")); const int numHidden = 3; const int numDirs = Wx.size[0]; const int numFeatures = Wx.size[2]; b = b.reshape(1, b.size[0]); Mat bx = b.colRange(0, b.cols / 2); Mat bh = b.colRange(b.cols / 2, b.cols); b = bx + bh; // IFGO->IGFO for (int k = 0; k < numDirs; ++k) { float* WxData = Wx.ptr(k); float* WhData = Wh.ptr(k); float* biasData = b.ptr(k); for (int j = 0; j < numHidden; ++j) { for (int i = 0; i < numFeatures; ++i) { std::swap(WxData[(numHidden + j) * numFeatures + i], WxData[(numHidden * 2 + j) * numFeatures + i]); } for (int i = 0; i < numHidden; ++i) { std::swap(WhData[(numHidden + j) * numHidden + i], WhData[(numHidden * 2 + j) * numHidden + i]); } std::swap(biasData[numHidden + j], biasData[numHidden * 2 + j]); } } Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]); Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]); h0 = h0.reshape(1, h0.size[0] * h0.size[1]); c0 = c0.reshape(1, c0.size[0] * c0.size[1]); LayerParams lstmParams; lstmParams.blobs.resize(5); lstmParams.blobs[0] = Wh; lstmParams.blobs[1] = Wx; lstmParams.blobs[2] = b; lstmParams.blobs[3] = h0; lstmParams.blobs[4] = c0; lstmParams.set("bidirectional", false); Ptr layer = LSTMLayer::create(lstmParams); Mat inp = blobFromNPY(_tf("lstm.hidden.input.npy")); std::vector inputs(1, inp), outputs; runLayer(layer, inputs, outputs); Mat h_t_reference = blobFromNPY(_tf("lstm.hidden.output.npy")); normAssert(h_t_reference, outputs[0]); } TEST(Layer_GRU_Test_Accuracy_with_, Pytorch) { Mat Wx = blobFromNPY(_tf("gru.W.npy")); Mat Wh = blobFromNPY(_tf("gru.R.npy")); Mat b = blobFromNPY(_tf("gru.B.npy")); Mat h0 = blobFromNPY(_tf("gru.h0.npy")); Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]); Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]); h0 = h0.reshape(1, h0.size[0] * h0.size[1]); b = b.reshape(1, b.size[0]); LayerParams gruParams; gruParams.blobs.resize(4); gruParams.blobs[0] = Wh; gruParams.blobs[1] = Wx; gruParams.blobs[2] = b; gruParams.blobs[3] = h0; gruParams.set("bidirectional", false); Ptr layer = GRULayer::create(gruParams); Mat inp = blobFromNPY(_tf("gru.input.npy")); std::vector inputs(1, inp), outputs; runLayer(layer, inputs, outputs); Mat h_t_reference = blobFromNPY(_tf("gru.output.npy")); normAssert(h_t_reference, outputs[0]); } TEST(Layer_RNN_Test_Accuracy_with_, CaffeRecurrent) { Ptr layer = RNNLayer::create(LayerParams()); layer->setWeights( blobFromNPY(_tf("rnn.prototxt.w_0.npy")), blobFromNPY(_tf("rnn.prototxt.w_1.npy")), blobFromNPY(_tf("rnn.prototxt.w_2.npy")), blobFromNPY(_tf("rnn.prototxt.w_3.npy")), blobFromNPY(_tf("rnn.prototxt.w_4.npy")) ); std::vector output, input(1, blobFromNPY(_tf("recurrent.input.npy"))); runLayer(layer, input, output); Mat h_ref = blobFromNPY(_tf("rnn.prototxt.h_1.npy")); normAssert(h_ref, output[0]); } TEST(Layer_LSTM_Test_Accuracy_, Reverse) { // This handcrafted setup calculates (approximately) the prefix sum of the // input, assuming the inputs are suitably small. cv::Mat input(2, 1, CV_32FC1); input.at(0, 0) = 1e-5f; input.at(1, 0) = 2e-5f; cv::Mat Wx(4, 1, CV_32FC1); Wx.at(0, 0) = 0.f; // Input gate Wx.at(1, 0) = 0.f; // Forget gate Wx.at(2, 0) = 0.f; // Output gate Wx.at(3, 0) = 1.f; // Update signal cv::Mat Wh(4, 1, CV_32FC1); Wh.at(0, 0) = 0.f; // Input gate Wh.at(1, 0) = 0.f; // Forget gate Wh.at(2, 0) = 0.f; // Output gate Wh.at(3, 0) = 0.f; // Update signal cv::Mat bias(4, 1, CV_32FC1); bias.at(0, 0) = 1e10f; // Input gate - always allows input to c bias.at(1, 0) = 1e10f; // Forget gate - never forget anything on c bias.at(2, 0) = 1e10f; // Output gate - always output everything bias.at(3, 0) = 0.f; // Update signal cv::Mat hInternal = cv::Mat::zeros(1, 1, CV_32FC1); cv::Mat cInternal = cv::Mat::zeros(1, 1, CV_32FC1); LayerParams lp; lp.set("reverse", true); lp.set("use_timestamp_dim", true); lp.blobs.clear(); lp.blobs.push_back(Wh); lp.blobs.push_back(Wx); lp.blobs.push_back(bias); lp.blobs.push_back(hInternal); lp.blobs.push_back(cInternal); cv::Ptr layer = LSTMLayer::create(lp); std::vector outputs; std::vector inputs; inputs.push_back(input); runLayer(layer, inputs, outputs); ASSERT_EQ(1, outputs.size()); cv::Mat out = outputs[0]; ASSERT_EQ(3, out.dims); ASSERT_EQ(shape(2, 1, 1), shape(out)); float* data = reinterpret_cast(out.data); EXPECT_NEAR(std::tanh(1e-5f) + std::tanh(2e-5f), data[0], 1e-10); EXPECT_NEAR(std::tanh(2e-5f), data[1], 1e-10); } class Layer_RNN_Test : public ::testing::Test { public: int nX, nH, nO, nT, nS; Mat Whh, Wxh, bh, Who, bo; Ptr layer; std::vector inputs, outputs; Layer_RNN_Test() { nT = 3; nS = 5; nX = 31; nH = 64; nO = 100; Whh = Mat::ones(nH, nH, CV_32F); Wxh = Mat::ones(nH, nX, CV_32F); bh = Mat::ones(nH, 1, CV_32F); Who = Mat::ones(nO, nH, CV_32F); bo = Mat::ones(nO, 1, CV_32F); layer = RNNLayer::create(LayerParams()); layer->setProduceHiddenOutput(true); layer->setWeights(Wxh, bh, Whh, Who, bo); } }; TEST_F(Layer_RNN_Test, get_set_test) { int sz[] = { nT, nS, 1, nX }; Mat inp(4, sz, CV_32F); randu(inp, -1., 1.); inputs.push_back(inp); runLayer(layer, inputs, outputs); EXPECT_EQ(outputs.size(), 2u); EXPECT_EQ(shape(outputs[0]), shape(nT, nS, nO)); EXPECT_EQ(shape(outputs[1]), shape(nT, nS, nH)); } TEST_P(Test_Caffe_layers, Accum) { if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testLayerUsingCaffeModels("accum", false, false, 0.0, 0.0, 2); testLayerUsingCaffeModels("accum_ref", false, false, 0.0, 0.0, 2); } TEST_P(Test_Caffe_layers, FlowWarp) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testLayerUsingCaffeModels("flow_warp", false, false, 0.0, 0.0, 2); } TEST_P(Test_Caffe_layers, ChannelNorm) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testLayerUsingCaffeModels("channel_norm", false, false); } TEST_P(Test_Caffe_layers, DataAugmentation) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testLayerUsingCaffeModels("data_augmentation", true, false); testLayerUsingCaffeModels("data_augmentation_2x1", true, false); testLayerUsingCaffeModels("data_augmentation_8x6", true, false); } TEST_P(Test_Caffe_layers, Resample) { if (backend != DNN_BACKEND_OPENCV) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); testLayerUsingCaffeModels("nearest_2inps", false, false, 0.0, 0.0, 2); testLayerUsingCaffeModels("nearest", false, false); } TEST_P(Test_Caffe_layers, Correlation) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testLayerUsingCaffeModels("correlation", false, false, 0.0, 0.0, 2); } TEST_P(Test_Caffe_layers, Convolution2Inputs) { testLayerUsingCaffeModels("conv_2_inps", true, false, 0.0, 0.0, 2); } TEST_P(Test_Caffe_layers, ROIPooling_Accuracy) { Net net = readNetFromCaffe(_tf("net_roi_pooling.prototxt")); ASSERT_FALSE(net.empty()); Mat inp = blobFromNPY(_tf("net_roi_pooling.input.npy")); Mat rois = blobFromNPY(_tf("net_roi_pooling.rois.npy")); Mat ref = blobFromNPY(_tf("net_roi_pooling.npy")); checkBackend(&inp, &ref); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(inp, "input"); net.setInput(rois, "rois"); Mat out = net.forward(); double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-5; double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-4; if (target == DNN_TARGET_CUDA_FP16) { l1 = 2e-4; lInf = 9e-4; } normAssert(out, ref, "", l1, lInf); } TEST_P(Test_Caffe_layers, FasterRCNN_Proposal) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); if(backend == DNN_BACKEND_CUDA) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); /* Proposal layer is unsupported */ Net net = readNetFromCaffe(_tf("net_faster_rcnn_proposal.prototxt")); Mat scores = blobFromNPY(_tf("net_faster_rcnn_proposal.scores.npy")); Mat deltas = blobFromNPY(_tf("net_faster_rcnn_proposal.deltas.npy")); Mat imInfo = (Mat_(1, 3) << 600, 800, 1.6f); net.setInput(scores, "rpn_cls_prob_reshape"); net.setInput(deltas, "rpn_bbox_pred"); net.setInput(imInfo, "im_info"); std::vector outs; net.setPreferableBackend(backend); net.setPreferableTarget(target); net.forward(outs, "output"); for (int i = 0; i < 2; ++i) { Mat ref = blobFromNPY(_tf(i == 0 ? "net_faster_rcnn_proposal.out_rois.npy" : "net_faster_rcnn_proposal.out_scores.npy")); const int numDets = ref.size[0]; EXPECT_LE(numDets, outs[i].size[0]); normAssert(outs[i].rowRange(0, numDets), ref); if (numDets < outs[i].size[0]) { EXPECT_EQ(countNonZero(outs[i].rowRange(numDets, outs[i].size[0])), 0); } } } typedef testing::TestWithParam > Scale_untrainable; TEST_P(Scale_untrainable, Accuracy) { Vec4i inpShapeVec = get<0>(GetParam()); int axis = get<1>(GetParam())[0]; int weightsDims = get<1>(GetParam())[1]; bool testFusion = get<2>(GetParam()); const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]}; // Create a network with two inputs. Scale layer multiplies a first input to // a second one. See http://caffe.berkeleyvision.org/tutorial/layers/scale.html Net net; // Check that this version of Scale layer won't be fused with Convolution layer. if (testFusion) { LayerParams lp; lp.set("kernel_size", 1); lp.set("num_output", 3); lp.set("group", 3); lp.set("bias_term", false); lp.type = "Convolution"; lp.name = "testConv"; std::vector weightsShape(4); weightsShape[0] = 3; // #outChannels weightsShape[1] = 1; // #inpChannels / group weightsShape[2] = 1; // height weightsShape[3] = 1; // width Mat weights(weightsShape, CV_32F); weights.setTo(1); lp.blobs.push_back(weights); net.addLayerToPrev(lp.name, lp.type, lp); } LayerParams lp; lp.type = "Scale"; lp.name = "testLayer"; lp.set("axis", axis); int id = net.addLayerToPrev(lp.name, lp.type, lp); net.connect(0, 1, id, 1); Mat input(4, inpShape, CV_32F); Mat weights(weightsDims, &inpShape[axis], CV_32F); randu(input, -1, 1); randu(weights, -1, 1); std::vector inpNames(2); inpNames[0] = "scale_input"; inpNames[1] = "scale_weights"; net.setInputsNames(inpNames); net.setInput(input, inpNames[0]); net.setInput(weights, inpNames[1]); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat out = net.forward(); Mat ref(input.dims, input.size, CV_32F); float* inpData = (float*)input.data; float* refData = (float*)ref.data; float* weightsData = (float*)weights.data; int spatialSize = 1; for (int i = axis + weightsDims; i < 4; ++i) spatialSize *= inpShape[i]; for (int i = 0; i < ref.total(); ++i) { float w = weightsData[(i / spatialSize) % weights.total()]; refData[i] = inpData[i] * w; } normAssert(out, ref); } INSTANTIATE_TEST_CASE_P(Layer_Test, Scale_untrainable, Combine( /*input size*/ Values(Vec4i(2, 3, 4, 5)), /*axis, #dims*/ Values(Vec2i(0, 1), Vec2i(0, 2), Vec2i(0, 3), Vec2i(0, 4), Vec2i(1, 1), Vec2i(1, 2), Vec2i(1, 3), Vec2i(2, 1), Vec2i(2, 2), Vec2i(3, 1)), /*conv fusion*/ testing::Bool() )); typedef testing::TestWithParam > Crop; TEST_P(Crop, Accuracy) { Vec4i inpShapeVec = get<0>(GetParam()); Vec4i sizShapeVec = get<1>(GetParam()); int axis = get<2>(GetParam()); int numOffsets = get<3>(GetParam()); int offsetVal = get<4>(GetParam()); const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]}; const int sizShape[] = {sizShapeVec[0], sizShapeVec[1], sizShapeVec[2], sizShapeVec[3]}; // Create a network with two inputs. Crop layer crops a first input to // the size of a second one. // See http://caffe.berkeleyvision.org/tutorial/layers/crop.html Net net; LayerParams lp; lp.name = "testCrop"; lp.type = "Crop"; lp.set("axis", axis); if (numOffsets > 0) { std::vector offsets(numOffsets, offsetVal); lp.set("offset", DictValue::arrayInt(&offsets[0], offsets.size())); } else offsetVal = 0; int id = net.addLayerToPrev(lp.name, lp.type, lp); net.connect(0, 1, id, 1); Mat inpImage(4, inpShape, CV_32F); Mat sizImage(4, sizShape, CV_32F); randu(inpImage, -1, 1); randu(sizImage, -1, 1); std::vector inpNames(2); inpNames[0] = "cropImage"; inpNames[1] = "sizImage"; net.setInputsNames(inpNames); net.setInput(inpImage, inpNames[0]); net.setInput(sizImage, inpNames[1]); net.setPreferableBackend(DNN_BACKEND_OPENCV); // There are a few conditions that represent invalid input to the crop // layer, so in those cases we want to verify an exception is thrown. bool shouldThrowException = false; if (numOffsets > 1 && numOffsets != 4 - axis) shouldThrowException = true; else for (int i = axis; i < 4; i++) if (sizShape[i] + offsetVal > inpShape[i]) shouldThrowException = true; Mat out; if (shouldThrowException) { ASSERT_ANY_THROW(out = net.forward()); return; } else out = net.forward(); // Finally, compare the cropped output blob from the DNN layer (out) // to a reference blob (ref) that we compute here. std::vector crop_range; crop_range.resize(4, Range::all()); for (int i = axis; i < 4; i++) crop_range[i] = Range(offsetVal, sizShape[i] + offsetVal); Mat ref(sizImage.dims, sizImage.size, CV_32F); inpImage(&crop_range[0]).copyTo(ref); normAssert(out, ref); } INSTANTIATE_TEST_CASE_P(Layer_Test, Crop, Combine( /*input blob shape*/ Values(Vec4i(1, 3, 20, 30)), /*cropsize blob shape*/ Values(Vec4i(1, 3, 10, 12)), /*start axis*/ Values(0, 1, 2), /*number of offsets*/ Values(0, 1, 2, 4), /*offset value*/ Values(3, 4) )); // Check that by default average pooling layer should not count zero padded values // into the normalization area. TEST_P(Test_Caffe_layers, Average_pooling_kernel_area) { LayerParams lp; lp.name = "testAvePool"; lp.type = "Pooling"; lp.set("kernel_size", 2); lp.set("stride", 2); lp.set("pool", "AVE"); Net net; net.addLayerToPrev(lp.name, lp.type, lp); // 1 2 | 3 // 4 5 | 6 // ----+-- // 7 8 | 9 Mat inp = (Mat_(3, 3) << 1, 2, 3, 4, 5, 6, 7, 8, 9); Mat ref = (Mat_(2, 2) << (1 + 2 + 4 + 5) / 4.f, (3 + 6) / 2.f, (7 + 8) / 2.f, 9); Mat tmp = blobFromImage(inp); net.setInput(blobFromImage(inp)); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat out = net.forward(); normAssert(out, blobFromImage(ref)); } TEST_P(Test_Caffe_layers, PriorBox_repeated) { Net net = readNet(_tf("prior_box.prototxt")); int inp_size[] = {1, 3, 10, 10}; int shape_size[] = {1, 2, 3, 4}; Mat inp(4, inp_size, CV_32F); randu(inp, -1.0f, 1.0f); Mat shape(4, shape_size, CV_32F); randu(shape, -1.0f, 1.0f); net.setInput(inp, "data"); net.setInput(shape, "shape"); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("priorbox_output.npy")); double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-5; double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-3 : 1e-4; if (target == DNN_TARGET_CUDA_FP16) { l1 = 7e-5; lInf = 0.0005; } normAssert(out, ref, "", l1, lInf); } // Test PriorBoxLayer in case of no aspect ratios (just squared proposals). TEST_P(Test_Caffe_layers, PriorBox_squares) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); LayerParams lp; lp.name = "testPriorBox"; lp.type = "PriorBox"; lp.set("min_size", 2); lp.set("flip", true); lp.set("clip", true); float variance[] = {0.1f, 0.1f, 0.2f, 0.2f}; float aspectRatios[] = {1.0f}; // That should be ignored. lp.set("variance", DictValue::arrayReal(&variance[0], 4)); lp.set("aspect_ratio", DictValue::arrayReal(&aspectRatios[0], 1)); Net net; int id = net.addLayerToPrev(lp.name, lp.type, lp); net.connect(0, 0, id, 1); // The second input is an input image. Shapes are used for boxes normalization. Mat inp(1, 2, CV_32F); randu(inp, -1, 1); net.setInput(blobFromImage(inp)); net.setPreferableBackend(backend); net.setPreferableTarget(target); Mat out = net.forward(); Mat ref = (Mat_(4, 4) << 0.0, 0.0, 0.75, 1.0, 0.25, 0.0, 1.0, 1.0, 0.1f, 0.1f, 0.2f, 0.2f, 0.1f, 0.1f, 0.2f, 0.2f); double l1 = 1e-5; if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16) l1 = 2e-5; normAssert(out.reshape(1, 4), ref, "", l1); } typedef TestWithParam > Layer_Test_DWconv_Prelu; TEST_P(Layer_Test_DWconv_Prelu, Accuracy) { // Test case // input img size 3x16x16 value all 1 // | // v // dw_conv weight[0]=-1 weight[1]=-2 weight[2]=-3 bias={1,2,3} // | // v // prelu weight={1,2,3} // | // v // output out size 3x14x14 if right: out[0]=-8 out[0]=-32 out[0]=-72 // but current opencv output: out[0]=-24 out[0]=-48 out[0]=-72 const int num_input = get<0>(GetParam()); //inpChannels const int group = 3; //outChannels=group when group>1 const int num_output = get<1>(GetParam()); const int kernel_depth = num_input/group; CV_Assert_N(num_output >= group, num_output % group == 0, num_input % group == 0); Net net; //layer 1: dwconv LayerParams lp; lp.name = "dwconv"; lp.type = "Convolution"; lp.set("kernel_size", 3); lp.set("num_output", num_output); lp.set("pad", 0); lp.set("group", group); lp.set("stride", 1); lp.set("engine", "CAFFE"); lp.set("bias_term", "true"); std::vector weightsShape(4); weightsShape[0] = num_output; // #outChannels weightsShape[1] = kernel_depth; // #inpChannels / group weightsShape[2] = 3; // height weightsShape[3] = 3; // width Mat weights(weightsShape, CV_32F, Scalar(1)); //assign weights for (int i = 0; i < weightsShape[0]; ++i) { for (int j = 0; j < weightsShape[1]; ++j) { for (int k = 0; k < weightsShape[2]; ++k) { for (int l = 0; l < weightsShape[3]; ++l) { weights.ptr(i, j, k)[l]=-1*(i+1); } } } } lp.blobs.push_back(weights); //assign bias Mat bias(1, num_output, CV_32F, Scalar(1)); for (int i = 0; i < 1; ++i) { for (int j = 0; j < num_output; ++j) { bias.ptr(i)[j]=j+1; } } lp.blobs.push_back(bias); net.addLayerToPrev(lp.name, lp.type, lp); //layer 2: prelu LayerParams lpr; lpr.name = "dw_relu"; lpr.type = "PReLU"; Mat weightsp(1, num_output, CV_32F, Scalar(1)); //assign weights for (int i = 0; i < 1; ++i) { for (int j = 0; j < num_output; ++j) { weightsp.ptr(i)[j]=j+1; } } lpr.blobs.push_back(weightsp); net.addLayerToPrev(lpr.name, lpr.type, lpr); int shape[] = {1, num_input, 16, 16}; Mat in_blob(4, &shape[0], CV_32FC1, Scalar(1)); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setInput(in_blob); Mat out = net.forward(); //assign target std::vector outShape(4); outShape[0] = 1; outShape[1] = num_output; // outChannels outShape[2] = 14; // height outShape[3] = 14; // width Mat target(outShape, CV_32F, Scalar(1)); for (int i = 0; i < outShape[0]; ++i) { for (int j = 0; j < outShape[1]; ++j) { for (int k = 0; k < outShape[2]; ++k) { for (int l = 0; l < outShape[3]; ++l) { target.ptr(i, j, k)[l]=(-9*kernel_depth*(j+1)+j+1)*(j+1); } } } } normAssert(out, target); } INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_DWconv_Prelu, Combine(Values(3, 6), Values(3, 6))); #ifdef HAVE_INF_ENGINE // Using Intel's Model Optimizer generate .xml and .bin files: // ./ModelOptimizer -w /path/to/caffemodel -d /path/to/prototxt \ // -p FP32 -i -b ${batch_size} -o /path/to/output/folder typedef testing::TestWithParam > Layer_Test_Convolution_DLDT; TEST_P(Layer_Test_Convolution_DLDT, Accuracy) { const Backend backendId = get<0>(GetParam()); const Target targetId = get<1>(GetParam()); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) throw SkipTestException("No support for async forward"); ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); Net netDefault = readNet(_tf("layer_convolution.caffemodel"), _tf("layer_convolution.prototxt")); Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin")); Mat inp = blobFromNPY(_tf("blob.npy")); netDefault.setInput(inp); netDefault.setPreferableBackend(DNN_BACKEND_OPENCV); Mat outDefault = netDefault.forward(); net.setInput(inp); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.5e-3 : 1e-5; double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.8e-2 : 1e-4; normAssert(outDefault, out, "", l1, lInf); std::vector outLayers = net.getUnconnectedOutLayers(); ASSERT_EQ(net.getLayer(outLayers[0])->name, "output"); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) ASSERT_EQ(net.getLayer(outLayers[0])->type, "Convolution"); else ASSERT_EQ(net.getLayer(outLayers[0])->type, "Add"); } TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8) { const Backend backendId = get<0>(GetParam()); const Target targetId = get<1>(GetParam()); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) throw SkipTestException("No support for async forward"); ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); int blobSize[] = {2, 6, 75, 113}; Mat inputs[] = {Mat(4, &blobSize[0], CV_8U), Mat()}; randu(inputs[0], 0, 255); inputs[0].convertTo(inputs[1], CV_32F); Mat outs[2]; for (int i = 0; i < 2; ++i) { Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin")); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); net.setInput(inputs[i]); outs[i] = net.forward(); ASSERT_EQ(outs[i].type(), CV_32F); } if (targetId != DNN_TARGET_MYRIAD) normAssert(outs[0], outs[1]); } TEST_P(Layer_Test_Convolution_DLDT, multithreading) { const Backend backendId = get<0>(GetParam()); const Target targetId = get<1>(GetParam()); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) throw SkipTestException("No support for async forward"); ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); std::string xmlPath = _tf("layer_convolution.xml"); std::string binPath = _tf("layer_convolution.bin"); Net firstNet = readNet(xmlPath, binPath); Net secondNet = readNet(xmlPath, binPath); Mat inp = blobFromNPY(_tf("blob.npy")); firstNet.setInput(inp); secondNet.setInput(inp); firstNet.setPreferableBackend(backendId); firstNet.setPreferableTarget(targetId); secondNet.setPreferableBackend(backendId); secondNet.setPreferableTarget(targetId); Mat out1, out2; std::thread t1([&]{out1 = firstNet.forward();}); std::thread t2([&]{out2 = secondNet.forward();}); t1.join(); t2.join(); Mat ref = blobFromNPY(_tf("layer_convolution.npy")); double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.5e-3 : 1e-5; double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.8e-2 : 1e-4; normAssert(out1, ref, "first thread", l1, lInf); normAssert(out2, ref, "second thread", l1, lInf); } INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Convolution_DLDT, dnnBackendsAndTargetsIE() ); // 1. Create a .prototxt file with the following network: // layer { // type: "Input" name: "data" top: "data" // input_param { shape { dim: 1 dim: 2 dim: 3 } } // } // layer { // type: "Input" name: "second_input" top: "second_input" // input_param { shape { dim: 1 dim: 2 dim: 3 } } // } // layer { // type: "Eltwise" name: "output" top: "output" // bottom: "data" bottom: "second_input" // eltwise_param { operation: SUM } // } // // 2. Create a .caffemodel file using Caffe: // // import caffe // net = caffe.Net('/path/to/prototxt', caffe.TEST) // net.save('/path/to/caffemodel') // // 3. Convert using ModelOptimizer. typedef testing::TestWithParam > > Test_DLDT_two_inputs_3dim; TEST_P(Test_DLDT_two_inputs_3dim, as_IR) { int firstInpType = get<0>(GetParam()); int secondInpType = get<1>(GetParam()); Target targetId = get<2>(GetParam()); Net net = readNet(_tf("net_two_inputs.xml"), _tf("net_two_inputs.bin")); std::vector inpSize = get<3>(GetParam()); Mat firstInp(3, inpSize.data(), firstInpType); Mat secondInp(3, inpSize.data(), secondInpType); randu(firstInp, 0, 255); randu(secondInp, 0, 255); net.setInput(firstInp, "data"); net.setInput(secondInp, "second_input"); net.setPreferableTarget(targetId); double l1 = ((targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) && (firstInpType == CV_32F || secondInpType == CV_32F)) ? 0.06 : 0.0; double lInf = ((targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) && (firstInpType == CV_32F || secondInpType == CV_32F)) ? 0.23 : 0.0; Mat out = net.forward(); Mat ref; cv::add(firstInp, secondInp, ref, Mat(), CV_32F); normAssert(out, ref, "", l1, lInf); } std::vector< std::vector > list_sizes{ {1, 2, 3}, {3, 2, 1}, {5, 5, 5}, {13, 7, 11} }; INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_two_inputs_3dim, Combine( Values(CV_8U, CV_32F), Values(CV_8U, CV_32F), testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)), testing::ValuesIn(list_sizes) )); class UnsupportedLayer : public Layer { public: UnsupportedLayer(const LayerParams ¶ms) : Layer(params) {} static Ptr create(const LayerParams& params) { return Ptr(new UnsupportedLayer(params)); } virtual bool supportBackend(int backendId) CV_OVERRIDE { return backendId == DNN_BACKEND_OPENCV; } virtual void forward(cv::InputArrayOfArrays inputs, cv::OutputArrayOfArrays outputs, cv::OutputArrayOfArrays internals) CV_OVERRIDE {} }; typedef DNNTestLayer Test_DLDT_layers; static void test_dldt_fused_output(Backend backend, Target target) { static const int kNumChannels = 3; Net net; { LayerParams lp; lp.set("kernel_size", 1); lp.set("num_output", 3); lp.set("bias_term", false); lp.type = "Convolution"; lp.name = "testConv"; lp.blobs.push_back(Mat({kNumChannels, 1, 1, 1}, CV_32F, Scalar(1))); net.addLayerToPrev(lp.name, lp.type, lp); } { LayerParams lp; lp.set("bias_term", false); lp.type = "Scale"; lp.name = "testScale"; lp.blobs.push_back(Mat({kNumChannels}, CV_32F, Scalar(1))); net.addLayerToPrev(lp.name, lp.type, lp); } { LayerParams lp; net.addLayerToPrev("unsupported_layer", "Unsupported", lp); } net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(Mat({1, 1, 2, 3}, CV_32FC1, Scalar(1))); net.forward(); } TEST_P(Test_DLDT_layers, fused_output) { CV_DNN_REGISTER_LAYER_CLASS(Unsupported, UnsupportedLayer); try { test_dldt_fused_output(backend, target); } catch (const std::exception& e) { ADD_FAILURE() << "Exception: " << e.what(); } catch(...) { ADD_FAILURE() << "Unknown exception"; } LayerFactory::unregisterLayer("Unsupported"); } TEST_P(Test_DLDT_layers, multiple_networks) { Net nets[2]; for (int i = 0; i < 2; ++i) { nets[i].setInputsNames(std::vector(1, format("input_%d", i))); LayerParams lp; lp.set("kernel_size", 1); lp.set("num_output", 1); lp.set("bias_term", false); lp.type = "Convolution"; lp.name = format("testConv_%d", i); lp.blobs.push_back(Mat({1, 1, 1, 1}, CV_32F, Scalar(1 + i))); nets[i].addLayerToPrev(lp.name, lp.type, lp); nets[i].setPreferableBackend(backend); nets[i].setPreferableTarget(target); nets[i].setInput(Mat({1, 1, 2, 3}, CV_32FC1, Scalar(1))); } Mat out_1 = nets[0].forward(); Mat out_2 = nets[1].forward(); // After the second model is initialized we try to receive an output from the first network again. out_1 = nets[0].forward(); normAssert(2 * out_1, out_2); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_layers, dnnBackendsAndTargets()); #endif // HAVE_INF_ENGINE // Test a custom layer. class CustomInterpLayer CV_FINAL : public Layer { public: CustomInterpLayer(const LayerParams ¶ms) : Layer(params) { zoomFactor = params.get("zoom_factor", 0); outWidth = params.get("width", 0); outHeight = params.get("height", 0); } static Ptr create(LayerParams& params) { return Ptr(new CustomInterpLayer(params)); } virtual bool getMemoryShapes(const std::vector > &inputs, const int requiredOutputs, std::vector > &outputs, std::vector > &internals) const CV_OVERRIDE { const int batchSize = inputs[0][0]; const int numChannels = inputs[0][1]; const int inpHeight = inputs[0][2]; const int inpWidth = inputs[0][3]; std::vector outShape(4); outShape[0] = batchSize; outShape[1] = numChannels; outShape[2] = outHeight != 0 ? outHeight : (inpHeight + (inpHeight - 1) * (zoomFactor - 1)); outShape[3] = outWidth != 0 ? outWidth : (inpWidth + (inpWidth - 1) * (zoomFactor - 1)); outputs.assign(1, outShape); return false; } virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE { std::vector outputs; outputs_arr.getMatVector(outputs); if (!outWidth && !outHeight) { outHeight = outputs[0].size[2]; outWidth = outputs[0].size[3]; } } // Implementation of this custom layer is based on https://github.com/cdmh/deeplab-public/blob/master/src/caffe/layers/interp_layer.cpp void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); if (inputs_arr.depth() == CV_16S) { forward_fallback(inputs_arr, outputs_arr, internals_arr); return; } std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); Mat& inp = inputs[0]; Mat& out = outputs[0]; const float* inpData = (float*)inp.data; float* outData = (float*)out.data; const int batchSize = inp.size[0]; const int numChannels = inp.size[1]; const int inpHeight = inp.size[2]; const int inpWidth = inp.size[3]; const float rheight = (outHeight > 1) ? static_cast(inpHeight - 1) / (outHeight - 1) : 0.f; const float rwidth = (outWidth > 1) ? static_cast(inpWidth - 1) / (outWidth - 1) : 0.f; for (int h2 = 0; h2 < outHeight; ++h2) { const float h1r = rheight * h2; const int h1 = h1r; const int h1p = (h1 < inpHeight - 1) ? 1 : 0; const float h1lambda = h1r - h1; const float h0lambda = 1.f - h1lambda; for (int w2 = 0; w2 < outWidth; ++w2) { const float w1r = rwidth * w2; const int w1 = w1r; const int w1p = (w1 < inpWidth - 1) ? 1 : 0; const float w1lambda = w1r - w1; const float w0lambda = 1.f - w1lambda; const float* pos1 = inpData + h1 * inpWidth + w1; float* pos2 = outData + h2 * outWidth + w2; for (int c = 0; c < batchSize * numChannels; ++c) { pos2[0] = h0lambda * (w0lambda * pos1[0] + w1lambda * pos1[w1p]) + h1lambda * (w0lambda * pos1[h1p * inpWidth] + w1lambda * pos1[h1p * inpWidth + w1p]); pos1 += inpWidth * inpHeight; pos2 += outWidth * outHeight; } } } } private: int outWidth, outHeight, zoomFactor; }; #ifndef OPENCV_DNN_EXTERNAL_PROTOBUF TEST_P(Test_Caffe_layers, Interp) #else TEST_P(Test_Caffe_layers, DISABLED_Interp) // requires patched protobuf (available in OpenCV source tree only) #endif { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception #endif if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); // Test a custom layer. CV_DNN_REGISTER_LAYER_CLASS(Interp, CustomInterpLayer); try { testLayerUsingCaffeModels("layer_interp", false, false); } catch (...) { LayerFactory::unregisterLayer("Interp"); throw; } LayerFactory::unregisterLayer("Interp"); // Test an implemented layer. testLayerUsingCaffeModels("layer_interp", false, false); } INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_Caffe_layers, dnnBackendsAndTargets()); TEST(Layer_Test_PoolingIndices, Accuracy) { Net net; LayerParams lp; lp.set("pool", "max"); lp.set("kernel_w", 2); lp.set("kernel_h", 2); lp.set("stride_w", 2); lp.set("stride_h", 2); lp.set("pad_w", 0); lp.set("pad_h", 0); lp.name = "testLayer.name"; // This test also checks that OpenCV lets use names with dots. lp.type = "Pooling"; net.addLayerToPrev(lp.name, lp.type, lp); Mat inp(10, 10, CV_8U); randu(inp, 0, 255); Mat maxValues(5, 5, CV_32F, Scalar(-1)), indices(5, 5, CV_32F, Scalar(-1)); for (int y = 0; y < 10; ++y) { int dstY = y / 2; for (int x = 0; x < 10; ++x) { int dstX = x / 2; uint8_t val = inp.at(y, x); if ((float)inp.at(y, x) > maxValues.at(dstY, dstX)) { maxValues.at(dstY, dstX) = val; indices.at(dstY, dstX) = y * 10 + x; } } } net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setInput(blobFromImage(inp)); std::vector outputs; net.forward(outputs, lp.name); normAssert(maxValues, outputs[0].reshape(1, 5)); normAssert(indices, outputs[1].reshape(1, 5)); } typedef testing::TestWithParam > > Layer_Test_ShuffleChannel; TEST_P(Layer_Test_ShuffleChannel, Accuracy) { Vec4i inpShapeVec = get<0>(GetParam()); int group = get<1>(GetParam()); ASSERT_EQ(inpShapeVec[1] % group, 0); const int groupSize = inpShapeVec[1] / group; int backendId = get<0>(get<2>(GetParam())); int targetId = get<1>(get<2>(GetParam())); Net net; LayerParams lp; lp.set("group", group); lp.type = "ShuffleChannel"; lp.name = "testLayer"; net.addLayerToPrev(lp.name, lp.type, lp); const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]}; Mat inp(4, inpShape, CV_32F); randu(inp, 0, 255); net.setInput(inp); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); double l1 = 1e-5, lInf = 1e-4; if (targetId == DNN_TARGET_OPENCL_FP16) { l1 = 5e-2; lInf = 7e-2; } else if (targetId == DNN_TARGET_CUDA_FP16) { l1 = 0.06; lInf = 0.07; } for (int n = 0; n < inpShapeVec[0]; ++n) { for (int c = 0; c < inpShapeVec[1]; ++c) { Mat outChannel = getPlane(out, n, c); Mat inpChannel = getPlane(inp, n, groupSize * (c % group) + c / group); normAssert(outChannel, inpChannel, "", l1, lInf); } } } INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_ShuffleChannel, Combine( /*input shape*/ Values(Vec4i(1, 6, 5, 7), Vec4i(3, 12, 1, 4)), /*group*/ Values(1, 2, 3, 6), dnnBackendsAndTargets(/*with IE*/ false) )); // Check if relu is not fused to convolution if we requested it's output TEST(Layer_Test_Convolution, relu_fusion) { Net net; { LayerParams lp; lp.set("kernel_size", 1); lp.set("num_output", 1); lp.set("bias_term", false); lp.type = "Convolution"; lp.name = "testConv"; int weightsShape[] = {1, 1, 1, 1}; Mat weights(4, &weightsShape[0], CV_32F, Scalar(1)); lp.blobs.push_back(weights); net.addLayerToPrev(lp.name, lp.type, lp); } { LayerParams lp; lp.type = "ReLU"; lp.name = "testReLU"; net.addLayerToPrev(lp.name, lp.type, lp); } int sz[] = {1, 1, 2, 3}; Mat input(4, &sz[0], CV_32F); randu(input, -1.0, -0.1); net.setInput(input); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat output = net.forward("testConv"); normAssert(input, output); } typedef testing::TestWithParam > > Layer_Test_Eltwise_unequal; TEST_P(Layer_Test_Eltwise_unequal, accuracy_input_0_truncate) { bool weighted = get<0>(GetParam()); int backendId = get<0>(get<1>(GetParam())); int targetId = get<1>(get<1>(GetParam())); if (backendId == DNN_BACKEND_CUDA && weighted) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); Net net; LayerParams lp; lp.type = "Eltwise"; lp.name = "testLayer"; lp.set("output_channels_mode", "input_0_truncate"); const int inpShapes[][4] = {{1, 4, 2, 2}, {1, 5, 2, 2}, {1, 3, 2, 2}}; const int out_channels = inpShapes[0][1]; std::vector inpNames(3); std::vector inputs(3); std::vector weights(3, 1); if (weighted) { for (int i = 0; i < inputs.size(); ++i) weights[i] = -0.125f + i * 0.25f; lp.set("coeff", DictValue::arrayReal(&weights[0], weights.size())); } int eltwiseId = net.addLayer(lp.name, lp.type, lp); for (int i = 0; i < inputs.size(); ++i) { inputs[i].create(4, inpShapes[i], CV_32F); size_t total = inputs[i].total(); for (size_t j = 0; j < total; j++) inputs[i].ptr()[j] = j + i * 100; inpNames[i] = format("input_%d", i); net.connect(0, i, eltwiseId, i); } Mat ref(4, inpShapes[0], CV_32F, Scalar(0)); net.setInputsNames(inpNames); for (int i = 0; i < inputs.size(); ++i) { //std::cout << ref.reshape(1,1) << endl; net.setInput(inputs[i], inpNames[i]); for (size_t batchId = 0; batchId < ref.size[0]; batchId++) { int input_channels = inputs[i].size[1]; Range ranges[4] = { Range(batchId, batchId + 1), Range(0, std::min(out_channels, input_channels)), Range::all(), Range::all() }; Mat ref_slice = ref(ranges); Mat input_slice = inputs[i](ranges); ref_slice += weights[i] * input_slice; } } net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); normAssert(out, ref); if (testing::Test::HasFailure()) { std::cout << out.reshape(1,1) << endl; std::cout << ref.reshape(1,1) << endl; } } TEST_P(Layer_Test_Eltwise_unequal, accuracy_input_0) { bool weighted = get<0>(GetParam()); int backendId = get<0>(get<1>(GetParam())); int targetId = get<1>(get<1>(GetParam())); Net net; LayerParams lp; lp.type = "Eltwise"; lp.name = "testLayer"; lp.set("output_channels_mode", "input_0"); if (backendId == DNN_BACKEND_CUDA && weighted) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); const int inpShapes[][4] = {{1, 4, 2, 2}, {1, 2, 2, 2}, {1, 3, 2, 2}}; const int out_channels = inpShapes[0][1]; std::vector inpNames(3); std::vector inputs(3); std::vector weights(3, 1); if (weighted) { for (int i = 0; i < inputs.size(); ++i) weights[i] = -0.125f + i * 0.25f; lp.set("coeff", DictValue::arrayReal(&weights[0], weights.size())); } int eltwiseId = net.addLayer(lp.name, lp.type, lp); for (int i = 0; i < inputs.size(); ++i) { inputs[i].create(4, inpShapes[i], CV_32F); size_t total = inputs[i].total(); for (size_t j = 0; j < total; j++) inputs[i].ptr()[j] = j + i * 100; inpNames[i] = format("input_%d", i); net.connect(0, i, eltwiseId, i); } Mat ref(4, inpShapes[0], CV_32F, Scalar(0)); net.setInputsNames(inpNames); for (int i = 0; i < inputs.size(); ++i) { //std::cout << ref.reshape(1,1) << endl; net.setInput(inputs[i], inpNames[i]); for (size_t batchId = 0; batchId < ref.size[0]; batchId++) { int input_channels = inputs[i].size[1]; Range ranges[4] = { Range(batchId, batchId + 1), Range(0, std::min(out_channels, input_channels)), Range::all(), Range::all() }; Mat ref_slice = ref(ranges); Mat input_slice = inputs[i](ranges); ref_slice += weights[i] * input_slice; } } net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); normAssert(out, ref); if (testing::Test::HasFailure()) { std::cout << out.reshape(1,1) << endl; std::cout << ref.reshape(1,1) << endl; } } INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Eltwise_unequal, Combine( testing::Bool(), dnnBackendsAndTargets() )); typedef testing::TestWithParam > Layer_Test_Resize; TEST_P(Layer_Test_Resize, change_input) { int backendId = get<0>(GetParam()); int targetId = get<1>(GetParam()); Net net; LayerParams lp; lp.type = "Resize"; lp.name = "testLayer"; lp.set("zoom_factor", 2); lp.set("interpolation", "nearest"); net.addLayerToPrev(lp.name, lp.type, lp); for (int i = 0; i < 2; ++i) { Mat inp(4 + i, 5 + i, CV_8UC3), ref; randu(inp, 0, 255); resize(inp, ref, Size(0, 0), 2, 2, INTER_NEAREST); ref = blobFromImage(ref); net.setInput(blobFromImage(inp)); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); normAssert(out, ref); } } INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Resize, dnnBackendsAndTargets()); struct Layer_Test_Slice : public testing::TestWithParam > { template void test_slice(const int* inputShape, const int* begin, const int* end) { int backendId = get<0>(GetParam()); int targetId = get<1>(GetParam()); Mat input(DIMS, inputShape, CV_32FC1, Scalar::all(0)); for (int i = 0; i < (int)input.total(); ++i) input.ptr()[i] = (float)i; std::vector range(DIMS); for (int i = 0; i < DIMS; ++i) range[i] = Range(begin[i], end[i]); Net net; LayerParams lp; lp.type = "Slice"; lp.name = "testLayer"; lp.set("begin", DictValue::arrayInt((int*)&begin[0], DIMS)); lp.set("end", DictValue::arrayInt((int*)&end[0], DIMS)); net.addLayerToPrev(lp.name, lp.type, lp); { net.setInput(input); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); EXPECT_GT(cv::norm(out, NORM_INF), 0); normAssert(out, input(range)); #if 0 cout << input(range).clone().reshape(1, 1) << endl; cout << out.reshape(1, 1) << endl; #endif } } }; TEST_P(Layer_Test_Slice, slice_channels_17762) { const int inputShape[4] = {1, 16, 6, 8}; const int begin[] = {0, 4, 0, 0}; const int end[] = {1, 8, 6, 8}; test_slice<4>(inputShape, begin, end); } TEST_P(Layer_Test_Slice, slice_channels_with_batch_17762) { const int inputShape[4] = {4, 4, 3, 4}; const int begin[] = {0, 1, 0, 0}; const int end[] = {4, 3, 3, 4}; test_slice<4>(inputShape, begin, end); } TEST_P(Layer_Test_Slice, slice_channels_and_batch_17762) { int backend = get<0>(GetParam()); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); const int inputShape[4] = {4, 4, 3, 4}; const int begin[] = {2, 1, 0, 0}; const int end[] = {4, 3, 3, 4}; test_slice<4>(inputShape, begin, end); } TEST_P(Layer_Test_Slice, slice_rows) { const int inputShape[4] = {1, 2, 6, 4}; const int begin[] = {0, 0, 4, 0}; const int end[] = {1, 2, 6, 4}; test_slice<4>(inputShape, begin, end); } TEST_P(Layer_Test_Slice, slice_cols) { const int inputShape[4] = {1, 2, 3, 8}; const int begin[] = {0, 0, 0, 4}; const int end[] = {1, 2, 3, 8}; test_slice<4>(inputShape, begin, end); } TEST_P(Layer_Test_Slice, slice_complex_1_unaligned) { const int inputShape[4] = {1, 4, 2, 3}; const int begin[] = {0, 2, 1, 0}; const int end[] = {1, 3, 2, 2}; test_slice<4>(inputShape, begin, end); } TEST_P(Layer_Test_Slice, slice_complex_2_x4) { const int inputShape[4] = {1, 3, 2, 4}; const int begin[] = {0, 2, 1, 0}; const int end[] = {1, 3, 2, 2}; test_slice<4>(inputShape, begin, end); } TEST_P(Layer_Test_Slice, slice_complex_3) { const int inputShape[4] = {1, 6, 4, 8}; const int begin[] = {0, 2, 1, 4}; const int end[] = {1, 4, 3, 8}; test_slice<4>(inputShape, begin, end); } TEST_P(Layer_Test_Slice, variable_input_shape) { int backendId = get<0>(GetParam()); int targetId = get<1>(GetParam()); int begin[] = {0, 0, 0, 0}; int end[] = {-1, -1, -1, -1}; Net net; LayerParams lp; lp.type = "Slice"; lp.name = "testLayer"; lp.set("begin", DictValue::arrayInt(&begin[0], 4)); lp.set("end", DictValue::arrayInt(&end[0], 4)); net.addLayerToPrev(lp.name, lp.type, lp); for (int i = 0; i < 2; ++i) { Mat inp(4 + i, 5 + i, CV_8UC1); randu(inp, 0, 255); inp = blobFromImage(inp); net.setInput(inp); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); normAssert(out, inp); } } INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Slice, dnnBackendsAndTargets()); typedef testing::TestWithParam > Layer_Test_BatchNorm; TEST_P(Layer_Test_BatchNorm, fusion) { // This tests reinitializes network by forwarding different batch size input. // We check BatchNorm layer weights restoring after fusion. int backendId = get<0>(GetParam()); int targetId = get<1>(GetParam()); const int ch = 4; Mat mean(1, ch, CV_32F), var(1, ch, CV_32F), weights(1, ch, CV_32F); randu(mean, 0, 1); randu(var, 0, 1); randu(weights, 0, 1); Net net; { LayerParams lp; lp.type = "BatchNorm"; lp.name = "bn"; lp.set("has_weight", false); lp.set("has_bias", false); lp.blobs.push_back(mean); lp.blobs.push_back(var); net.addLayerToPrev(lp.name, lp.type, lp); } { LayerParams lp; lp.type = "Scale"; lp.name = "scale"; lp.set("has_bias", false); lp.blobs.push_back(weights); net.addLayerToPrev(lp.name, lp.type, lp); } Mat inp(4, 5, CV_32FC(ch)); randu(inp, 0, 1); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); net.setInput(blobFromImage(inp)); Mat ref = net.forward(); net.setInput(blobFromImages(std::vector(2, inp))); Mat out = net.forward(); for (int i = 0; i < 2; ++i) { std::vector ranges(4, Range::all()); ranges[0].start = i; ranges[0].end = i + 1; normAssert(out(ranges), ref); } } INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_BatchNorm, dnnBackendsAndTargets()); class TestLayerFusion : public DNNTestLayer { public: static void makeDefaultTestConvolutionLayer(LayerParams& convParams, int in_channels, int num_filters, bool bias_term) { const int kernel_h = 3, kernel_w = 3; const int pad_h = kernel_h / 2, pad_w = kernel_w / 2; convParams.set("kernel_h", kernel_h); convParams.set("kernel_w", kernel_w); convParams.set("pad_h", pad_h); convParams.set("pad_w", pad_w); convParams.set("num_output", num_filters); convParams.set("bias_term", bias_term); convParams.type = "Convolution"; convParams.name = "convolution"; float conv_init_magnitude = 1.0f / in_channels / kernel_h / kernel_w; int weightsShape[] = {num_filters, in_channels, kernel_h, kernel_w}; Mat weights(4, &weightsShape[0], CV_32F); randu(weights, -conv_init_magnitude, conv_init_magnitude); convParams.blobs.push_back(weights); if (bias_term) { Mat bias(1, num_filters, CV_32F); randu(bias, -1.0f, 1.0f); convParams.blobs.push_back(bias); } } static void makeDefaultTestActivationLayer(LayerParams& activationParams, const std::string& type, int in_channels) { activationParams.type = type; activationParams.name = "activation"; if (activationParams.type == "ReLU") activationParams.set("negative_slope", 0.1f); else if (activationParams.type == "Power") { activationParams.set("power", 2.0f); activationParams.set("scale", 0.5f); activationParams.set("shift", 0.3f); } else if (activationParams.type == "ReLU6") { activationParams.set("min_value", -1.0f); activationParams.set("max_value", 1.0f); } else if (activationParams.type == "ChannelsPReLU") { Mat scales(1, in_channels, CV_32F); randu(scales, -1.0f, 1.0f); activationParams.blobs.push_back(scales); } else if (activationParams.type == "Exp") { activationParams.set("base", -1.0f); activationParams.set("scale", 0.3f); activationParams.set("shift", 0.6f); } } static void makeDefaultTestEltwiseLayer(LayerParams& eltwiseParams, const std::string& op, bool withCoefficients) { eltwiseParams.type = "Eltwise"; eltwiseParams.name = "eltwise"; eltwiseParams.set("operation", op); if (withCoefficients) { float coeff[] = {0.3f, 0.5f}; eltwiseParams.set("coeff", DictValue::arrayReal(coeff, 2)); } } static void test(Mat& input, Net& net, Backend backendId, Target targetId, std::vector expectedFusedLayers = std::vector(), double l1 = 0.0, double lInf = 0.0) { DNNTestLayer::checkBackend(backendId, targetId); net.enableFusion(false); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(DNN_TARGET_CPU); net.setInput(input); Mat outputReference = net.forward().clone(); std::vector refTimings; net.getPerfProfile(refTimings); for (int i = 0; i < refTimings.size(); i++) { CV_Assert(refTimings[i] != 0.0); } net.enableFusion(true); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); net.setInput(input); Mat outputTest = net.forward().clone(); std::vector testTimings; net.getPerfProfile(testTimings); for (int i = 0; i < testTimings.size(); i++) { if(std::find(expectedFusedLayers.begin(), expectedFusedLayers.end(), i + 1) != expectedFusedLayers.end()) { EXPECT_EQ(testTimings[i], 0.0); } else { EXPECT_NE(testTimings[i], 0.0); } } // double ref_max_value, ref_min_value; // minMaxLoc(outputReference.reshape(1, 1), &ref_min_value, &ref_max_value); // std::cout << "reference range: " << ref_min_value << ' ' << ref_max_value << std::endl; double default_l1, default_lInf; DNNTestLayer::getDefaultThresholds(backendId, targetId, &default_l1, &default_lInf); if (l1 == 0.0) l1 = default_l1; if (lInf == 0.0) lInf = default_lInf; normAssert(outputReference, outputTest, "", l1, lInf); } static testing::internal::ParamGenerator eltwiseOpList() { // TODO: automate list generation return Values("sum", "max", "min", "prod", "div"); } static testing::internal::ParamGenerator activationLayersList() { // TODO: automate list generation return Values("ReLU", "ReLU6", "ChannelsPReLU", "TanH", "Swish", "Mish", "Sigmoid", "ELU", "AbsVal", "BNLL", "Power", "Exp"); } static testing::internal::ParamGenerator > dnnBackendsAndTargetsForFusionTests() { return dnnBackendsAndTargets(false, false, true, false, true, false); // OCV OpenCL + OCV CPU + CUDA } }; typedef TestWithParam > > ConvolutionActivationFusion; TEST_P(ConvolutionActivationFusion, Accuracy) { // input // | // ----------------------- // | convolution | // ----------------------- // | // ----------------------- // | activation | // ----------------------- // | // output const int batch_size = 2, in_channels = 16; const int in_height = 16, in_width = 16; int inputShape[] = {batch_size, in_channels, in_height, in_width}; Mat input(4, &inputShape[0], CV_32F); randu(input, 1.0f, 2.0f); bool bias_term = get<0>(GetParam()); LayerParams convParams; TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term); std::string actType = get<1>(GetParam()); LayerParams activationParams; TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels); Backend backendId = get<0>(get<2>(GetParam())); Target targetId = get<1>(get<2>(GetParam())); Net net; int convId = net.addLayer(convParams.name, convParams.type, convParams); int activId = net.addLayerToPrev(activationParams.name, activationParams.type, activationParams); net.connect(0, 0, convId, 0); std::vector expectedFusedLayers; if (backendId == DNN_BACKEND_OPENCV) { if (targetId == DNN_TARGET_CPU) expectedFusedLayers.push_back(activId); // all activations are fused else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) { if (actType == "ReLU" || actType == "ChannelsPReLU" || actType == "ReLU6" || actType == "TanH" /*|| actType == "Power"*/) expectedFusedLayers.push_back(activId); } } else if (backendId == DNN_BACKEND_CUDA) { if (actType == "ReLU" || actType == "ReLU6" || actType == "TanH" || actType == "Swish" || actType == "Mish" || actType == "Sigmoid" || actType == "Power") expectedFusedLayers.push_back(activId); } TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers); } INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionActivationFusion, Combine( /* bias */ testing::Bool(), /* activation */ TestLayerFusion::activationLayersList(), TestLayerFusion::dnnBackendsAndTargetsForFusionTests() )); typedef TestWithParam > > ConvolutionEltwiseFusion; TEST_P(ConvolutionEltwiseFusion, Accuracy) { // input // | // ------------------------------- // | | // | --------------- // | | convolution | // | --------------- // | | // | ---------------- | // --------| eltwise op |------- // ---------------- // | // output const int batch_size = 2, in_channels = 16; const int in_height = 16, in_width = 16; int inputShape[] = {batch_size, in_channels, in_height, in_width}; Mat input(4, &inputShape[0], CV_32F); randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div bool bias_term = get<0>(GetParam()); LayerParams convParams; TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term); std::string eltwiseOp = get<1>(GetParam()); bool weightedEltwise = get<2>(GetParam()); if (eltwiseOp != "sum" && weightedEltwise) throw SkipTestException("weighted eltwise not supported"); LayerParams eltwiseParams; TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise); Net net; int convId = net.addLayer(convParams.name, convParams.type, convParams); int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams); net.connect(0, 0, convId, 0); net.connect(convId, 0, eltwiseId, 0); net.connect(0, 0, eltwiseId, 1); Backend backendId = get<0>(get<3>(GetParam())); Target targetId = get<1>(get<3>(GetParam())); std::vector expectedFusedLayers; if (backendId == DNN_BACKEND_CUDA && eltwiseOp == "sum" && !weightedEltwise) expectedFusedLayers.push_back(eltwiseId); TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers); } INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionEltwiseFusion, Combine( /* bias */ testing::Bool(), /* eltwise op */ TestLayerFusion::eltwiseOpList(), /* eltwise weighted */ testing::Bool(), TestLayerFusion::dnnBackendsAndTargetsForFusionTests() )); typedef TestWithParam > > ConvolutionEltwiseActivationFusion; TEST_P(ConvolutionEltwiseActivationFusion, Accuracy) { // input // | // ------------------------------- // | | // | --------------- // | | convolution | // | --------------- // | | // | ---------------- | // --------| eltwise op |------- // ---------------- // | // ---------------- // | activation | // ---------------- // | // output const int batch_size = 2, in_channels = 16; const int in_height = 16, in_width = 16; int inputShape[] = {batch_size, in_channels, in_height, in_width}; Mat input(4, &inputShape[0], CV_32F); randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div bool bias_term = get<0>(GetParam()); LayerParams convParams; TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term); std::string eltwiseOp = get<1>(GetParam()); bool weightedEltwise = get<2>(GetParam()); if (eltwiseOp != "sum" && weightedEltwise) throw SkipTestException("weighted eltwise not supported"); LayerParams eltwiseParams; TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise); std::string actType = get<3>(GetParam()); LayerParams activationParams; TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels); Backend backendId = get<0>(get<4>(GetParam())); Target targetId = get<1>(get<4>(GetParam())); Net net; int convId = net.addLayer(convParams.name, convParams.type, convParams); int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams); int activId = net.addLayer(activationParams.name, activationParams.type, activationParams); net.connect(0, 0, convId, 0); net.connect(convId, 0, eltwiseId, 0); net.connect(0, 0, eltwiseId, 1); net.connect(eltwiseId, 0, activId, 0); std::vector expectedFusedLayers; if (backendId == DNN_BACKEND_OPENCV) { if (targetId == DNN_TARGET_CPU) expectedFusedLayers.push_back(activId); // activation is fused with eltwise layer else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) { if (eltwiseOp == "sum" && !weightedEltwise && (actType == "ReLU" || actType == "ChannelsPReLU" /*|| actType == "Power"*/) ) { expectedFusedLayers.push_back(eltwiseId); expectedFusedLayers.push_back(activId); } } } else if(backendId == DNN_BACKEND_CUDA) { if (eltwiseOp == "sum" && !weightedEltwise) { expectedFusedLayers.push_back(eltwiseId); if (actType == "ReLU" || actType == "ReLU6" || actType == "TanH" || actType == "Swish" || actType == "Mish" || actType == "Sigmoid" || actType == "Power") expectedFusedLayers.push_back(activId); } } TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers); } INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionEltwiseActivationFusion, Combine( /* bias */ testing::Bool(), /* eltwise op */ TestLayerFusion::eltwiseOpList(), /* eltwise weighted */ testing::Bool(), /* activation */ TestLayerFusion::activationLayersList(), TestLayerFusion::dnnBackendsAndTargetsForFusionTests() )); typedef TestWithParam > > ConvolutionActivationEltwiseFusion; TEST_P(ConvolutionActivationEltwiseFusion, Accuracy) { // input // | // ------------------------------- // | | // | ---------------- // | | convolution | // | ---------------- // | | // | ---------------- // | | activation | // | ---------------- // | | // | ---------------- | // --------| eltwise sum |------- // ---------------- // | const int batch_size = 2, in_channels = 16; const int in_height = 16, in_width = 16; int inputShape[] = {batch_size, in_channels, in_height, in_width}; Mat input(4, &inputShape[0], CV_32F); randu(input, 1.0f, 2.0f); // avoid small values to test eltwise div bool bias_term = get<0>(GetParam()); LayerParams convParams; TestLayerFusion::makeDefaultTestConvolutionLayer(convParams, in_channels, in_channels, bias_term); std::string actType = get<1>(GetParam()); LayerParams activationParams; TestLayerFusion::makeDefaultTestActivationLayer(activationParams, actType, in_channels); std::string eltwiseOp = get<2>(GetParam()); bool weightedEltwise = get<3>(GetParam()); if (eltwiseOp != "sum" && weightedEltwise) throw SkipTestException("weighted eltwise not supported"); LayerParams eltwiseParams; TestLayerFusion::makeDefaultTestEltwiseLayer(eltwiseParams, eltwiseOp, weightedEltwise); Backend backendId = get<0>(get<4>(GetParam())); Target targetId = get<1>(get<4>(GetParam())); Net net; int convId = net.addLayer(convParams.name, convParams.type, convParams); int activId = net.addLayer(activationParams.name, activationParams.type, activationParams); int eltwiseId = net.addLayer(eltwiseParams.name, eltwiseParams.type, eltwiseParams); net.connect(0, 0, convId, 0); net.connect(convId, 0, activId, 0); net.connect(activId, 0, eltwiseId, 0); net.connect(0, 0, eltwiseId, 1); std::vector expectedFusedLayers; if (backendId == DNN_BACKEND_OPENCV) { if (targetId == DNN_TARGET_CPU) expectedFusedLayers.push_back(activId); // activation fused with convolution else if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) { if (actType == "ReLU" || actType == "ChannelsPReLU" || actType == "ReLU6" || actType == "TanH" /*|| actType == "Power"*/) expectedFusedLayers.push_back(activId); // activation fused with convolution } } else if(backendId == DNN_BACKEND_CUDA) { if (actType == "ReLU" || actType == "ReLU6" || actType == "TanH" || actType == "Swish" || actType == "Mish" || actType == "Sigmoid" || actType == "Power") { expectedFusedLayers.push_back(activId); if (eltwiseOp == "sum" && !weightedEltwise) expectedFusedLayers.push_back(eltwiseId); } } TestLayerFusion::test(input, net, backendId, targetId, expectedFusedLayers); } INSTANTIATE_TEST_CASE_P(TestLayerFusion, ConvolutionActivationEltwiseFusion, Combine( /* bias */ testing::Bool(), /* activation */ TestLayerFusion::activationLayersList(), /* eltwise op */ TestLayerFusion::eltwiseOpList(), /* eltwise weighted */ testing::Bool(), TestLayerFusion::dnnBackendsAndTargetsForFusionTests() )); }} // namespace