#include "opencv2/video/tracking.hpp" #include "opencv2/highgui/highgui.hpp" #include using namespace cv; static inline Point calcPoint(Point2f center, double R, double angle) { return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R; } static void help() { printf( "\nExamle of c calls to OpenCV's Kalman filter.\n" " Tracking of rotating point.\n" " Rotation speed is constant.\n" " Both state and measurements vectors are 1D (a point angle),\n" " Measurement is the real point angle + gaussian noise.\n" " The real and the estimated points are connected with yellow line segment,\n" " the real and the measured points are connected with red line segment.\n" " (if Kalman filter works correctly,\n" " the yellow segment should be shorter than the red one).\n" "\n" " Pressing any key (except ESC) will reset the tracking with a different speed.\n" " Pressing ESC will stop the program.\n" ); } int main(int, char**) { help(); Mat img(500, 500, CV_8UC3); KalmanFilter KF(2, 1, 0); Mat state(2, 1, CV_32F); /* (phi, delta_phi) */ Mat processNoise(2, 1, CV_32F); Mat measurement = Mat::zeros(1, 1, CV_32F); char code = (char)-1; for(;;) { randn( state, Scalar::all(0), Scalar::all(0.1) ); KF.transitionMatrix = (Mat_(2, 2) << 1, 1, 0, 1); setIdentity(KF.measurementMatrix); setIdentity(KF.processNoiseCov, Scalar::all(1e-5)); setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1)); setIdentity(KF.errorCovPost, Scalar::all(1)); randn(KF.statePost, Scalar::all(0), Scalar::all(0.1)); for(;;) { Point2f center(img.cols*0.5f, img.rows*0.5f); float R = img.cols/3.f; double stateAngle = state.at(0); Point statePt = calcPoint(center, R, stateAngle); Mat prediction = KF.predict(); double predictAngle = prediction.at(0); Point predictPt = calcPoint(center, R, predictAngle); randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at(0))); // generate measurement measurement += KF.measurementMatrix*state; double measAngle = measurement.at(0); Point measPt = calcPoint(center, R, measAngle); // plot points #define drawCross( center, color, d ) \ line( img, Point( center.x - d, center.y - d ), \ Point( center.x + d, center.y + d ), color, 1, CV_AA, 0); \ line( img, Point( center.x + d, center.y - d ), \ Point( center.x - d, center.y + d ), color, 1, CV_AA, 0 ) img = Scalar::all(0); drawCross( statePt, Scalar(255,255,255), 3 ); drawCross( measPt, Scalar(0,0,255), 3 ); drawCross( predictPt, Scalar(0,255,0), 3 ); line( img, statePt, measPt, Scalar(0,0,255), 3, CV_AA, 0 ); line( img, statePt, predictPt, Scalar(0,255,255), 3, CV_AA, 0 ); if(theRNG().uniform(0,4) != 0) KF.correct(measurement); randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at(0, 0)))); state = KF.transitionMatrix*state + processNoise; imshow( "Kalman", img ); code = (char)waitKey(100); if( code > 0 ) break; } if( code == 27 || code == 'q' || code == 'Q' ) break; } return 0; }