/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "npy_blob.hpp" #include #include // CV_DNN_REGISTER_LAYER_CLASS namespace opencv_test { using namespace std; using namespace testing; using namespace cv; using namespace cv::dnn; template static std::string _tf(TStr filename, bool inTorchDir = true) { String path = "dnn/"; if (inTorchDir) path += "torch/"; path += filename; return findDataFile(path, false); } TEST(Torch_Importer, simple_read) { Net net; ASSERT_NO_THROW(net = readNetFromTorch(_tf("net_simple_net.txt"), false)); ASSERT_FALSE(net.empty()); } static void runTorchNet(String prefix, int targetId = DNN_TARGET_CPU, String outLayerName = "", bool check2ndBlob = false, bool isBinary = false) { String suffix = (isBinary) ? ".dat" : ".txt"; Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary); ASSERT_FALSE(net.empty()); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(targetId); Mat inp, outRef; ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) ); ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) ); if (outLayerName.empty()) outLayerName = net.getLayerNames().back(); net.setInput(inp, "0"); std::vector outBlobs; net.forward(outBlobs, outLayerName); normAssert(outRef, outBlobs[0]); if (check2ndBlob) { Mat out2 = outBlobs[1]; Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary); normAssert(out2, ref2); } } typedef testing::TestWithParam Test_Torch_layers; TEST_P(Test_Torch_layers, run_convolution) { runTorchNet("net_conv", GetParam(), "", false, true); } TEST_P(Test_Torch_layers, run_pool_max) { runTorchNet("net_pool_max", GetParam(), "", true); } TEST_P(Test_Torch_layers, run_pool_ave) { runTorchNet("net_pool_ave", GetParam()); } TEST_P(Test_Torch_layers, run_reshape) { int targetId = GetParam(); runTorchNet("net_reshape", targetId); runTorchNet("net_reshape_batch", targetId); runTorchNet("net_reshape_single_sample", targetId); runTorchNet("net_reshape_channels", targetId, "", false, true); } TEST_P(Test_Torch_layers, run_linear) { runTorchNet("net_linear_2d", GetParam()); } TEST_P(Test_Torch_layers, run_concat) { int targetId = GetParam(); runTorchNet("net_concat", targetId, "l5_torchMerge"); runTorchNet("net_depth_concat", targetId, "", false, true); } TEST_P(Test_Torch_layers, run_deconv) { runTorchNet("net_deconv", GetParam()); } TEST_P(Test_Torch_layers, run_batch_norm) { runTorchNet("net_batch_norm", GetParam(), "", false, true); } TEST_P(Test_Torch_layers, net_prelu) { runTorchNet("net_prelu", GetParam()); } TEST_P(Test_Torch_layers, net_cadd_table) { runTorchNet("net_cadd_table", GetParam()); } TEST_P(Test_Torch_layers, net_softmax) { int targetId = GetParam(); runTorchNet("net_softmax", targetId); runTorchNet("net_softmax_spatial", targetId); } TEST_P(Test_Torch_layers, net_logsoftmax) { runTorchNet("net_logsoftmax"); runTorchNet("net_logsoftmax_spatial"); } TEST_P(Test_Torch_layers, net_lp_pooling) { int targetId = GetParam(); runTorchNet("net_lp_pooling_square", targetId, "", false, true); runTorchNet("net_lp_pooling_power", targetId, "", false, true); } TEST_P(Test_Torch_layers, net_conv_gemm_lrn) { runTorchNet("net_conv_gemm_lrn", GetParam(), "", false, true); } TEST_P(Test_Torch_layers, net_inception_block) { runTorchNet("net_inception_block", GetParam(), "", false, true); } TEST_P(Test_Torch_layers, net_normalize) { runTorchNet("net_normalize", GetParam(), "", false, true); } TEST_P(Test_Torch_layers, net_padding) { int targetId = GetParam(); runTorchNet("net_padding", targetId, "", false, true); runTorchNet("net_spatial_zero_padding", targetId, "", false, true); runTorchNet("net_spatial_reflection_padding", targetId, "", false, true); } TEST_P(Test_Torch_layers, net_non_spatial) { runTorchNet("net_non_spatial", GetParam(), "", false, true); } INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_layers, availableDnnTargets()); typedef testing::TestWithParam Test_Torch_nets; TEST_P(Test_Torch_nets, OpenFace_accuracy) { const string model = findDataFile("dnn/openface_nn4.small2.v1.t7", false); Net net = readNetFromTorch(model); net.setPreferableTarget(GetParam()); Mat sample = imread(findDataFile("cv/shared/lena.png", false)); Mat sampleF32(sample.size(), CV_32FC3); sample.convertTo(sampleF32, sampleF32.type()); sampleF32 /= 255; resize(sampleF32, sampleF32, Size(96, 96), 0, 0, INTER_NEAREST); Mat inputBlob = blobFromImage(sampleF32); net.setInput(inputBlob); Mat out = net.forward(); Mat outRef = readTorchBlob(_tf("net_openface_output.dat"), true); normAssert(out, outRef); } TEST_P(Test_Torch_nets, ENet_accuracy) { Net net; { const string model = findDataFile("dnn/Enet-model-best.net", false); net = readNetFromTorch(model, true); ASSERT_TRUE(!net.empty()); } net.setPreferableTarget(GetParam()); Mat sample = imread(_tf("street.png", false)); Mat inputBlob = blobFromImage(sample, 1./255); net.setInput(inputBlob, ""); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("torch_enet_prob.npy", false)); // Due to numerical instability in Pooling-Unpooling layers (indexes jittering) // thresholds for ENet must be changed. Accuracy of resuults was checked on // Cityscapes dataset and difference in mIOU with Torch is 10E-4% normAssert(ref, out, "", 0.00044, 0.44); const int N = 3; for (int i = 0; i < N; i++) { net.setInput(inputBlob, ""); Mat out = net.forward(); normAssert(ref, out, "", 0.00044, 0.44); } } // Check accuracy of style transfer models from https://github.com/jcjohnson/fast-neural-style // th fast_neural_style.lua \ // -input_image ~/opencv_extra/testdata/dnn/googlenet_1.png \ // -output_image lena.png \ // -median_filter 0 \ // -image_size 0 \ // -model models/eccv16/starry_night.t7 // th fast_neural_style.lua \ // -input_image ~/opencv_extra/testdata/dnn/googlenet_1.png \ // -output_image lena.png \ // -median_filter 0 \ // -image_size 0 \ // -model models/instance_norm/feathers.t7 TEST_P(Test_Torch_nets, FastNeuralStyle_accuracy) { std::string models[] = {"dnn/fast_neural_style_eccv16_starry_night.t7", "dnn/fast_neural_style_instance_norm_feathers.t7"}; std::string targets[] = {"dnn/lena_starry_night.png", "dnn/lena_feathers.png"}; for (int i = 0; i < 2; ++i) { const string model = findDataFile(models[i], false); Net net = readNetFromTorch(model); net.setPreferableTarget(GetParam()); Mat img = imread(findDataFile("dnn/googlenet_1.png", false)); Mat inputBlob = blobFromImage(img, 1.0, Size(), Scalar(103.939, 116.779, 123.68), false); net.setInput(inputBlob); Mat out = net.forward(); // Deprocessing. getPlane(out, 0, 0) += 103.939; getPlane(out, 0, 1) += 116.779; getPlane(out, 0, 2) += 123.68; out = cv::min(cv::max(0, out), 255); Mat ref = imread(findDataFile(targets[i])); Mat refBlob = blobFromImage(ref, 1.0, Size(), Scalar(), false); normAssert(out, refBlob, "", 0.5, 1.1); } } INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_nets, availableDnnTargets()); // TODO: fix OpenCL and add to the rest of tests TEST(Torch_Importer, run_paralel) { runTorchNet("net_parallel", DNN_TARGET_CPU, "l5_torchMerge"); } TEST(Torch_Importer, DISABLED_run_paralel) { runTorchNet("net_parallel", DNN_TARGET_OPENCL, "l5_torchMerge"); } TEST(Torch_Importer, net_residual) { runTorchNet("net_residual", DNN_TARGET_CPU, "", false, true); } // Test a custom layer // https://github.com/torch/nn/blob/master/doc/convolution.md#nn.SpatialUpSamplingNearest class SpatialUpSamplingNearestLayer CV_FINAL : public Layer { public: SpatialUpSamplingNearestLayer(const LayerParams ¶ms) : Layer(params) { scale = params.get("scale_factor"); } static Ptr create(LayerParams& params) { return Ptr(new SpatialUpSamplingNearestLayer(params)); } virtual bool getMemoryShapes(const std::vector > &inputs, const int requiredOutputs, std::vector > &outputs, std::vector > &internals) const CV_OVERRIDE { std::vector outShape(4); outShape[0] = inputs[0][0]; // batch size outShape[1] = inputs[0][1]; // number of channels outShape[2] = scale * inputs[0][2]; outShape[3] = scale * inputs[0][3]; outputs.assign(1, outShape); return false; } virtual void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) CV_OVERRIDE { Mat& inp = *inputs[0]; Mat& out = outputs[0]; const int outHeight = out.size[2]; const int outWidth = out.size[3]; for (size_t n = 0; n < inputs[0]->size[0]; ++n) { for (size_t ch = 0; ch < inputs[0]->size[1]; ++ch) { resize(getPlane(inp, n, ch), getPlane(out, n, ch), Size(outWidth, outHeight), 0, 0, INTER_NEAREST); } } } virtual void forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE {} private: int scale; }; TEST(Torch_Importer, upsampling_nearest) { CV_DNN_REGISTER_LAYER_CLASS(SpatialUpSamplingNearest, SpatialUpSamplingNearestLayer); runTorchNet("net_spatial_upsampling_nearest", DNN_TARGET_CPU, "", false, true); LayerFactory::unregisterLayer("SpatialUpSamplingNearest"); } }