/* dlanst.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; doublereal dlanst_(char *norm, integer *n, doublereal *d__, doublereal *e) { /* System generated locals */ integer i__1; doublereal ret_val, d__1, d__2, d__3, d__4, d__5; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__; doublereal sum, scale; extern logical lsame_(char *, char *); doublereal anorm; extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, doublereal *, doublereal *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLANST returns the value of the one norm, or the Frobenius norm, or */ /* the infinity norm, or the element of largest absolute value of a */ /* real symmetric tridiagonal matrix A. */ /* Description */ /* =========== */ /* DLANST returns the value */ /* DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ /* ( */ /* ( norm1(A), NORM = '1', 'O' or 'o' */ /* ( */ /* ( normI(A), NORM = 'I' or 'i' */ /* ( */ /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ /* where norm1 denotes the one norm of a matrix (maximum column sum), */ /* normI denotes the infinity norm of a matrix (maximum row sum) and */ /* normF denotes the Frobenius norm of a matrix (square root of sum of */ /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies the value to be returned in DLANST as described */ /* above. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. When N = 0, DLANST is */ /* set to zero. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The diagonal elements of A. */ /* E (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (n-1) sub-diagonal or super-diagonal elements of A. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --e; --d__; /* Function Body */ if (*n <= 0) { anorm = 0.; } else if (lsame_(norm, "M")) { /* Find max(abs(A(i,j))). */ anorm = (d__1 = d__[*n], abs(d__1)); i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1)); anorm = max(d__2,d__3); /* Computing MAX */ d__2 = anorm, d__3 = (d__1 = e[i__], abs(d__1)); anorm = max(d__2,d__3); /* L10: */ } } else if (lsame_(norm, "O") || *(unsigned char *) norm == '1' || lsame_(norm, "I")) { /* Find norm1(A). */ if (*n == 1) { anorm = abs(d__[1]); } else { /* Computing MAX */ d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = e[*n - 1], abs( d__1)) + (d__2 = d__[*n], abs(d__2)); anorm = max(d__3,d__4); i__1 = *n - 1; for (i__ = 2; i__ <= i__1; ++i__) { /* Computing MAX */ d__4 = anorm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[ i__], abs(d__2)) + (d__3 = e[i__ - 1], abs(d__3)); anorm = max(d__4,d__5); /* L20: */ } } } else if (lsame_(norm, "F") || lsame_(norm, "E")) { /* Find normF(A). */ scale = 0.; sum = 1.; if (*n > 1) { i__1 = *n - 1; dlassq_(&i__1, &e[1], &c__1, &scale, &sum); sum *= 2; } dlassq_(n, &d__[1], &c__1, &scale, &sum); anorm = scale * sqrt(sum); } ret_val = anorm; return ret_val; /* End of DLANST */ } /* dlanst_ */