#!/usr/bin/env python ''' Camshift tracker ================ This is a demo that shows mean-shift based tracking You select a color objects such as your face and it tracks it. This reads from video camera (0 by default, or the camera number the user enters) http://www.robinhewitt.com/research/track/camshift.html ''' # Python 2/3 compatibility from __future__ import print_function import sys PY3 = sys.version_info[0] == 3 if PY3: xrange = range import numpy as np import cv2 from tst_scene_render import TestSceneRender def intersectionRate(s1, s2): x1, y1, x2, y2 = s1 s1 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ] x1, y1, x2, y2 = s2 s2 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ] area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2)) return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2))) from tests_common import NewOpenCVTests class camshift_test(NewOpenCVTests): frame = None selection = None drag_start = None show_backproj = False track_window = None render = None def prepareRender(self): cv2.namedWindow('camshift') self.render = TestSceneRender(self.get_sample('samples/data/pca_test1.jpg')) def runTracker(self): framesCounter = 0 self.selection = True xmin, ymin, xmax, ymax = self.render.getCurrentRect() self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin) while True: framesCounter += 1 self.frame = self.render.getNextFrame() vis = self.frame.copy() hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.))) if self.selection: x0, y0, x1, y1 = self.render.getCurrentRect() + 50 x0 -= 100 y0 -= 100 hsv_roi = hsv[y0:y1, x0:x1] mask_roi = mask[y0:y1, x0:x1] hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] ) cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX) self.hist = hist.reshape(-1) vis_roi = vis[y0:y1, x0:x1] cv2.bitwise_not(vis_roi, vis_roi) vis[mask == 0] = 0 self.selection = False if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0: self.selection = None prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1) prob &= mask term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit) if self.show_backproj: vis[:] = prob[...,np.newaxis] cv2.rectangle(vis, (self.track_window[0], self.track_window[1]), (self.track_window[0] + self.track_window[2], self.track_window[1] + self.track_window[3]), (0, 255, 0), 2) trackingRect = np.array(self.track_window) trackingRect[2] += trackingRect[0] trackingRect[3] += trackingRect[1] print(intersectionRate((self.render.getCurrentRect()), trackingRect)) self.assertGreater(intersectionRate((self.render.getCurrentRect()), trackingRect), 0.5) if framesCounter > 300: break def test_camshift(self): self.prepareRender() self.runTracker()