/* * BackgroundSubtractorGBH_test.cpp * * Created on: Jun 14, 2012 * Author: andrewgodbehere */ #include "test_precomp.hpp" using namespace cv; class CV_BackgroundSubtractorTest : public cvtest::BaseTest { public: CV_BackgroundSubtractorTest(); protected: void run(int); }; CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest() { } /** * This test checks the following: * (i) BackgroundSubtractorGMG can operate with matrices of various types and sizes * (ii) Training mode returns empty fgmask * (iii) End of training mode, and anomalous frame yields every pixel detected as FG */ void CV_BackgroundSubtractorTest::run(int) { int code = cvtest::TS::OK; RNG& rng = ts->get_rng(); int type = ((unsigned int)rng)%7; //!< pick a random type, 0 - 6, defined in types_c.h int channels = 1 + ((unsigned int)rng)%4; //!< random number of channels from 1 to 4. int channelsAndType = CV_MAKETYPE(type,channels); int width = 2 + ((unsigned int)rng)%98; //!< Mat will be 2 to 100 in width and height int height = 2 + ((unsigned int)rng)%98; Ptr fgbg = Algorithm::create("BackgroundSubtractor.GMG"); Mat fgmask; if (fgbg == NULL) CV_Error(CV_StsError,"Failed to create Algorithm\n"); /** * Set a few parameters */ fgbg->set("smoothingRadius",7); fgbg->set("decisionThreshold",0.7); fgbg->set("initializationFrames",120); /** * Generate bounds for the values in the matrix for each type */ uchar maxuc = 0, minuc = 0; char maxc = 0, minc = 0; unsigned int maxui = 0, minui = 0; int maxi=0, mini = 0; long int maxli = 0, minli = 0; float maxf = 0, minf = 0; double maxd = 0, mind = 0; /** * Max value for simulated images picked randomly in upper half of type range * Min value for simulated images picked randomly in lower half of type range */ if (type == CV_8U) { uchar half = UCHAR_MAX/2; maxuc = (unsigned char)rng.uniform(half+32, UCHAR_MAX); minuc = (unsigned char)rng.uniform(0, half-32); } else if (type == CV_8S) { maxc = (char)rng.uniform(32, CHAR_MAX); minc = (char)rng.uniform(CHAR_MIN, -32); } else if (type == CV_16U) { ushort half = USHRT_MAX/2; maxui = (unsigned int)rng.uniform(half+32, USHRT_MAX); minui = (unsigned int)rng.uniform(0, half-32); } else if (type == CV_16S) { maxi = rng.uniform(32, SHRT_MAX); mini = rng.uniform(SHRT_MIN, -32); } else if (type == CV_32S) { maxli = rng.uniform(32, INT_MAX); minli = rng.uniform(INT_MIN, -32); } else if (type == CV_32F) { maxf = rng.uniform(32.0f, FLT_MAX); minf = rng.uniform(-FLT_MAX, -32.0f); } else if (type == CV_64F) { maxd = rng.uniform(32.0, DBL_MAX); mind = rng.uniform(-DBL_MAX, -32.0); } Mat simImage = Mat::zeros(height, width, channelsAndType); const unsigned int numLearningFrames = 120; for (unsigned int i = 0; i < numLearningFrames; ++i) { /** * Genrate simulated "image" for any type. Values always confined to upper half of range. */ if (type == CV_8U) { rng.fill(simImage,RNG::UNIFORM,(unsigned char)(minuc/2+maxuc/2),maxuc); if (i == 0) fgbg->initializeType(simImage,minuc,maxuc); } else if (type == CV_8S) { rng.fill(simImage,RNG::UNIFORM,(char)(minc/2+maxc/2),maxc); if (i==0) fgbg->initializeType(simImage,minc,maxc); } else if (type == CV_16U) { rng.fill(simImage,RNG::UNIFORM,(unsigned int)(minui/2+maxui/2),maxui); if (i==0) fgbg->initializeType(simImage,minui,maxui); } else if (type == CV_16S) { rng.fill(simImage,RNG::UNIFORM,(int)(mini/2+maxi/2),maxi); if (i==0) fgbg->initializeType(simImage,mini,maxi); } else if (type == CV_32F) { rng.fill(simImage,RNG::UNIFORM,(float)(minf/2.0+maxf/2.0),maxf); if (i==0) fgbg->initializeType(simImage,minf,maxf); } else if (type == CV_32S) { rng.fill(simImage,RNG::UNIFORM,(long int)(minli/2+maxli/2),maxli); if (i==0) fgbg->initializeType(simImage,minli,maxli); } else if (type == CV_64F) { rng.fill(simImage,RNG::UNIFORM,(double)(mind/2.0+maxd/2.0),maxd); if (i==0) fgbg->initializeType(simImage,mind,maxd); } /** * Feed simulated images into background subtractor */ (*fgbg)(simImage,fgmask); Mat fullbg = Mat::zeros(simImage.rows, simImage.cols, CV_8U); fgbg->updateBackgroundModel(fullbg); //! fgmask should be entirely background during training code = cvtest::cmpEps2( ts, fgmask, fullbg, 0, false, "The training foreground mask" ); if (code < 0) ts->set_failed_test_info( code ); } //! generate last image, distinct from training images if (type == CV_8U) rng.fill(simImage,RNG::UNIFORM,minuc,minuc); else if (type == CV_8S) rng.fill(simImage,RNG::UNIFORM,minc,minc); else if (type == CV_16U) rng.fill(simImage,RNG::UNIFORM,minui,minui); else if (type == CV_16S) rng.fill(simImage,RNG::UNIFORM,mini,mini); else if (type == CV_32F) rng.fill(simImage,RNG::UNIFORM,minf,minf); else if (type == CV_32S) rng.fill(simImage,RNG::UNIFORM,minli,minli); else if (type == CV_64F) rng.fill(simImage,RNG::UNIFORM,mind,mind); (*fgbg)(simImage,fgmask); //! now fgmask should be entirely foreground Mat fullfg = 255*Mat::ones(simImage.rows, simImage.cols, CV_8U); code = cvtest::cmpEps2( ts, fgmask, fullfg, 255, false, "The final foreground mask" ); if (code < 0) { ts->set_failed_test_info( code ); } } TEST(VIDEO_BGSUBGMG, accuracy) { CV_BackgroundSubtractorTest test; test.safe_run(); }