/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // INFORMATION REGARDING THE CONTRIBUTION: // // Author: Ovidiu Parvu // Affiliation: Brunel University // Created: 11.09.2013 // E-mail: // Web: http://people.brunel.ac.uk/~cspgoop // // These functions were implemented during Ovidiu Parvu's first year as a PhD student at // Brunel University, London, UK. The PhD project is supervised by prof. David Gilbert (principal) // and prof. Nigel Saunders (second). // // THE IMPLEMENTATION OF THE MODULES IS BASED ON THE FOLLOWING PAPERS: // // [1] V. Klee and M. C. Laskowski, “Finding the smallest triangles containing a given convex // polygon,” Journal of Algorithms, vol. 6, no. 3, pp. 359–375, Sep. 1985. // [2] J. O’Rourke, A. Aggarwal, S. Maddila, and M. Baldwin, “An optimal algorithm for finding // minimal enclosing triangles,” Journal of Algorithms, vol. 7, no. 2, pp. 258–269, Jun. 1986. // // The overall complexity of the algorithm is theta(n) where "n" represents the number // of vertices in the convex polygon. // // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include #include #include ///////////////////////////////// Constants definitions ////////////////////////////////// // Intersection of line and polygon #define INTERSECTS_BELOW 1 #define INTERSECTS_ABOVE 2 #define INTERSECTS_CRITICAL 3 #define INTERSECTS_LIMIT 4 // Error messages #define ERR_MIDPOINT_SIDE_B "The position of the middle point of side B could not be determined." #define ERR_SIDE_B_GAMMA "The position of side B could not be determined, because gamma(b) could not be computed." #define ERR_VERTEX_C_ON_SIDE_B "The position of the vertex C on side B could not be determined, because the considered lines do not intersect." #define ERR_TRIANGLE_VERTICES "The position of the triangle vertices could not be determined, because the sides of the triangle do not intersect." // Possible values for validation flag #define VALIDATION_SIDE_A_TANGENT 0 #define VALIDATION_SIDE_B_TANGENT 1 #define VALIDATION_SIDES_FLUSH 2 // Threshold value for geometrical comparisons #define EPSILON 1E-5 /////////////////////////////////// Global variables ///////////////////////////////////// static unsigned int validationFlag; static cv::Point2f vertexA; static cv::Point2f vertexB; static cv::Point2f vertexC; static cv::Point2f sideAStartVertex; static cv::Point2f sideAEndVertex; static cv::Point2f sideBStartVertex; static cv::Point2f sideBEndVertex; static cv::Point2f sideCStartVertex; static cv::Point2f sideCEndVertex; static double triangleArea; static unsigned int a; static unsigned int b; static unsigned int c; static unsigned int nrOfPoints; static std::vector polygon; ////////////////////////////// Helper functions declarations ///////////////////////////// static void advance(unsigned int &index); static void advanceBToRightChain(); static bool almostEqual(double number1, double number2); static double angleOfLineWrtOxAxis(const cv::Point2f &a, const cv::Point2f &b); static bool areEqualPoints(const cv::Point2f &point1, const cv::Point2f &point2); static bool areIdenticalLines(const std::vector &side1Params, const std::vector &side2Params, double sideCExtraParam); static bool areIdenticalLines(double a1, double b1, double c1, double a2, double b2, double c2); static bool areIntersectingLines(const std::vector &side1Params, const std::vector &side2Params, double sideCExtraParam, cv::Point2f &intersectionPoint1, cv::Point2f &intersectionPoint2); static bool areOnTheSameSideOfLine(const cv::Point2f &p1, const cv::Point2f &p2, const cv::Point2f &a, const cv::Point2f &b); static double areaOfTriangle(const cv::Point2f &a, const cv::Point2f &b, const cv::Point2f &c); static void copyResultingTriangle(const std::vector &resultingTriangle, cv::OutputArray triangle); static void createConvexHull(cv::InputArray points); static double distanceBtwPoints(const cv::Point2f &a, const cv::Point2f &b); static double distanceFromPointToLine(const cv::Point2f &a, const cv::Point2f &linePointB, const cv::Point2f &linePointC); static bool findGammaIntersectionPoints(unsigned int polygonPointIndex, const cv::Point2f &side1StartVertex, const cv::Point2f &side1EndVertex, const cv::Point2f &side2StartVertex, const cv::Point2f &side2EndVertex, cv::Point2f &intersectionPoint1, cv::Point2f &intersectionPoint2); static void findMinEnclosingTriangle(std::vector &triangle, double& area); static void findMinimumAreaEnclosingTriangle(std::vector &triangle, double &area); static cv::Point2f findVertexCOnSideB(); static bool gamma(unsigned int polygonPointIndex, cv::Point2f &gammaPoint); static bool greaterOrEqual(double number1, double number2); static double height(const cv::Point2f &polygonPoint); static double height(unsigned int polygonPointIndex); static void initialise(std::vector &triangle, double &area); static unsigned int intersects(double angleGammaAndPoint, unsigned int polygonPointIndex); static bool intersectsAbove(const cv::Point2f &gammaPoint, unsigned int polygonPointIndex); static unsigned int intersectsAboveOrBelow(unsigned int succPredIndex, unsigned int pointIndex); static bool intersectsBelow(const cv::Point2f &gammaPoint, unsigned int polygonPointIndex); static bool isAngleBetween(double angle1, double angle2, double angle3); static bool isAngleBetweenNonReflex(double angle1, double angle2, double angle3); static bool isFlushAngleBtwPredAndSucc(double &angleFlushEdge, double anglePred, double angleSucc); static bool isGammaAngleBtw(double &gammaAngle, double angle1, double angle2); static bool isGammaAngleEqualTo(double &gammaAngle, double angle); static bool isLocalMinimalTriangle(); static bool isNotBTangency(); static bool isOppositeAngleBetweenNonReflex(double angle1, double angle2, double angle3); static bool isPointOnLineSegment(const cv::Point2f &point, const cv::Point2f &lineSegmentStart, const cv::Point2f &lineSegmentEnd); static bool isValidMinimalTriangle(); static bool lessOrEqual(double number1, double number2); static void lineEquationDeterminedByPoints(const cv::Point2f &p, const cv::Point2f &q, double &a, double &b, double &c); static std::vector lineEquationParameters(const cv::Point2f& p, const cv::Point2f &q); static bool lineIntersection(const cv::Point2f &a1, const cv::Point2f &b1, const cv::Point2f &a2, const cv::Point2f &b2, cv::Point2f &intersection); static bool lineIntersection(double a1, double b1, double c1, double a2, double b2, double c2, cv::Point2f &intersection); static double maximum(double number1, double number2, double number3); static cv::Point2f middlePoint(const cv::Point2f &a, const cv::Point2f &b); static bool middlePointOfSideB(cv::Point2f& middlePointOfSideB); static void moveAIfLowAndBIfHigh(); static double oppositeAngle(double angle); static unsigned int predecessor(unsigned int index); static void returnMinimumAreaEnclosingTriangle(std::vector &triangle, double &area); static void searchForBTangency(); static int sign(double number); static unsigned int successor(unsigned int index); static void updateMinimumAreaEnclosingTriangle(std::vector &triangle, double &area); static void updateSideB(); static void updateSidesBA(); static void updateSidesCA(); ///////////////////////////////////// Main functions ///////////////////////////////////// //! Find the minimum enclosing triangle and its area for the given set of points /*! * The overall complexity of the algorithm is theta(n) where "n" represents the number * of vertices in the convex hull of the points * * @param points Set of points * @param triangle Minimum area triangle enclosing the given polygon * @param area Area of the minimum area enclosing triangle */ void cv::minEnclosingTriangle(cv::InputArray points, CV_OUT cv::OutputArray triangle, CV_OUT double& area) { std::vector resultingTriangle; createConvexHull(points); findMinEnclosingTriangle(resultingTriangle, area); copyResultingTriangle(resultingTriangle, triangle); } /////////////////////////////// Helper functions definition ////////////////////////////// //! Create the convex hull of the given set of points /*! * @param points The provided set of points */ static void createConvexHull(cv::InputArray points) { cv::Mat pointsMat = points.getMat(); CV_Assert((pointsMat.checkVector(2) > 0) && ((pointsMat.depth() == CV_32F) || (pointsMat.depth() == CV_32S))); convexHull(points, polygon, true, true); } //! Find the minimum enclosing triangle and its area /*! * The overall complexity of the algorithm is theta(n) where "n" represents the number * of vertices in the convex polygon * * @param triangle Minimum area triangle enclosing the given polygon * @param area Area of the minimum area enclosing triangle */ static void findMinEnclosingTriangle( std::vector &triangle, double& area) { initialise(triangle, area); if (polygon.size() > 3) { findMinimumAreaEnclosingTriangle(triangle, area); } else { returnMinimumAreaEnclosingTriangle(triangle, area); } } //! Copy resultingTriangle to the OutputArray triangle static void copyResultingTriangle(const std::vector &resultingTriangle, cv::OutputArray triangle) { cv::Mat(resultingTriangle).convertTo(triangle, triangle.fixedType() ? triangle.type() : CV_32F); } //! Initialisation function static void initialise(std::vector &triangle, double &area) { nrOfPoints = static_cast(polygon.size()); area = std::numeric_limits::max(); // Clear all points previously stored in the vector triangle.clear(); // Initialise the values of the indices for the algorithm a = 1; b = 2; c = 0; } //! Find the minimum area enclosing triangle for the given polygon /*! * @param triangle Minimum area triangle enclosing the given polygon * @param area Area of the minimum area enclosing triangle */ static void findMinimumAreaEnclosingTriangle(std::vector &triangle, double &area) { for (c = 0; c < nrOfPoints; c++) { advanceBToRightChain(); moveAIfLowAndBIfHigh(); searchForBTangency(); updateSidesCA(); if (isNotBTangency()) { updateSidesBA(); } else { updateSideB(); } if (isLocalMinimalTriangle()) { updateMinimumAreaEnclosingTriangle(triangle, area); } } } //! Return the minimum area enclosing (pseudo-)triangle in case the convex polygon has at most three points /*! * @param triangle Minimum area triangle enclosing the given polygon * @param area Area of the minimum area enclosing triangle */ static void returnMinimumAreaEnclosingTriangle(std::vector &triangle, double &area) { for (int i = 0; i < 3; i++) { triangle.push_back(polygon[i % nrOfPoints]); } area = areaOfTriangle(triangle[0], triangle[1], triangle[2]); } //! Advance b to the right chain /*! * See paper [2] for more details */ static void advanceBToRightChain() { while (greaterOrEqual(height(successor(b)), height(b))) { advance(b); } } //! Move "a" if it is low and "b" if it is high /*! * See paper [2] for more details */ static void moveAIfLowAndBIfHigh() { while(height(b) > height(a)) { cv::Point2f gammaOfA; if ((gamma(a, gammaOfA)) && (intersectsBelow(gammaOfA, b))) { advance(b); } else { advance(a); } } } //! Search for the tangency of side B /*! * See paper [2] for more details */ static void searchForBTangency() { cv::Point2f gammaOfB; while (((gamma(b, gammaOfB)) && (intersectsBelow(gammaOfB, b))) && (greaterOrEqual(height(b), height(predecessor(a))))) { advance(b); } } //! Check if tangency for side B was not obtained /*! * See paper [2] for more details */ static bool isNotBTangency() { cv::Point2f gammaOfB; if (((gamma(b, gammaOfB)) && (intersectsAbove(gammaOfB, b))) || (height(b) < height(predecessor(a)))) { return true; } return false; } //! Update sides A and C /*! * Side C will have as start and end vertices the polygon points "c" and "c-1" * Side A will have as start and end vertices the polygon points "a" and "a-1" */ static void updateSidesCA() { sideCStartVertex = polygon[predecessor(c)]; sideCEndVertex = polygon[c]; sideAStartVertex = polygon[predecessor(a)]; sideAEndVertex = polygon[a]; } //! Update sides B and possibly A if tangency for side B was not obtained /*! * See paper [2] for more details */ static void updateSidesBA() { // Side B is flush with edge [b, b-1] sideBStartVertex = polygon[predecessor(b)]; sideBEndVertex = polygon[b]; // Find middle point of side B cv::Point2f sideBMiddlePoint; if ((middlePointOfSideB(sideBMiddlePoint)) && (height(sideBMiddlePoint) < height(predecessor(a)))) { sideAStartVertex = polygon[predecessor(a)]; sideAEndVertex = findVertexCOnSideB(); validationFlag = VALIDATION_SIDE_A_TANGENT; } else { validationFlag = VALIDATION_SIDES_FLUSH; } } //! Set side B if tangency for side B was obtained /*! * See paper [2] for more details */ static void updateSideB() { if (!gamma(b, sideBStartVertex)) { CV_Error(cv::Error::StsInternal, ERR_SIDE_B_GAMMA); } sideBEndVertex = polygon[b]; validationFlag = VALIDATION_SIDE_B_TANGENT; } //! Update the triangle vertices after all sides were set and check if a local minimal triangle was found or not /*! * See paper [2] for more details */ static bool isLocalMinimalTriangle() { if ((!lineIntersection(sideAStartVertex, sideAEndVertex, sideBStartVertex, sideBEndVertex, vertexC)) || (!lineIntersection(sideAStartVertex, sideAEndVertex, sideCStartVertex, sideCEndVertex, vertexB)) || (!lineIntersection(sideBStartVertex, sideBEndVertex, sideCStartVertex, sideCEndVertex, vertexA))) { return false; } return isValidMinimalTriangle(); } //! Check if the found minimal triangle is valid /*! * This means that all midpoints of the triangle should touch the polygon * * See paper [2] for more details */ static bool isValidMinimalTriangle() { cv::Point2f midpointSideA = middlePoint(vertexB, vertexC); cv::Point2f midpointSideB = middlePoint(vertexA, vertexC); cv::Point2f midpointSideC = middlePoint(vertexA, vertexB); bool sideAValid = (validationFlag == VALIDATION_SIDE_A_TANGENT) ? (areEqualPoints(midpointSideA, polygon[predecessor(a)])) : (isPointOnLineSegment(midpointSideA, sideAStartVertex, sideAEndVertex)); bool sideBValid = (validationFlag == VALIDATION_SIDE_B_TANGENT) ? (areEqualPoints(midpointSideB, polygon[b])) : (isPointOnLineSegment(midpointSideB, sideBStartVertex, sideBEndVertex)); bool sideCValid = isPointOnLineSegment(midpointSideC, sideCStartVertex, sideCEndVertex); return (sideAValid && sideBValid && sideCValid); } //! Update the current minimum area enclosing triangle if the newly obtained one has a smaller area /*! * @param minimumAreaEnclosingTriangle Minimum area triangle enclosing the given polygon * @param minimumAreaEnclosingTriangleArea Area of the minimum area triangle enclosing the given polygon */ static void updateMinimumAreaEnclosingTriangle(std::vector &triangle, double &area) { triangleArea = areaOfTriangle(vertexA, vertexB, vertexC); if (triangleArea < area) { triangle.clear(); triangle.push_back(vertexA); triangle.push_back(vertexB); triangle.push_back(vertexC); area = triangleArea; } } //! Return the middle point of side B static bool middlePointOfSideB(cv::Point2f& middlePointOfSideB) { cv::Point2f vertexA, vertexC; if ((!lineIntersection(sideBStartVertex, sideBEndVertex, sideCStartVertex, sideCEndVertex, vertexA)) || (!lineIntersection(sideBStartVertex, sideBEndVertex, sideAStartVertex, sideAEndVertex, vertexC))) { return false; } middlePointOfSideB = middlePoint(vertexA, vertexC); return true; } //! Check if the line intersects below /*! * Check if the line determined by gammaPoint and polygon[polygonPointIndex] intersects * the polygon below the point polygon[polygonPointIndex] * * @param gammaPoint Gamma(p) * @param polygonPointIndex Index of the polygon point which is considered when determining the line */ static bool intersectsBelow(const cv::Point2f &gammaPoint, unsigned int polygonPointIndex) { double angleOfGammaAndPoint = angleOfLineWrtOxAxis(polygon[polygonPointIndex], gammaPoint); return (intersects(angleOfGammaAndPoint, polygonPointIndex) == INTERSECTS_BELOW); } //! Check if the line intersects above /*! * Check if the line determined by gammaPoint and polygon[polygonPointIndex] intersects * the polygon above the point polygon[polygonPointIndex] * * @param gammaPoint Gamma(p) * @param polygonPointIndex Index of the polygon point which is considered when determining the line */ static bool intersectsAbove(const cv::Point2f &gammaPoint, unsigned int polygonPointIndex) { double angleOfGammaAndPoint = angleOfLineWrtOxAxis(gammaPoint, polygon[polygonPointIndex]); return (intersects(angleOfGammaAndPoint, polygonPointIndex) == INTERSECTS_ABOVE); } //! Check if/where the line determined by gammaPoint and polygon[polygonPointIndex] intersects the polygon /*! * @param angleGammaAndPoint Angle between gammaPoint and polygon[polygonPointIndex] * @param polygonPointIndex Index of the polygon point which is considered when determining the line */ static unsigned int intersects(double angleGammaAndPoint, unsigned int polygonPointIndex) { double anglePointPredecessor = angleOfLineWrtOxAxis(polygon[predecessor(polygonPointIndex)], polygon[polygonPointIndex]); double anglePointSuccessor = angleOfLineWrtOxAxis(polygon[successor(polygonPointIndex)], polygon[polygonPointIndex]); double angleFlushEdge = angleOfLineWrtOxAxis(polygon[predecessor(c)], polygon[c]); if (isFlushAngleBtwPredAndSucc(angleFlushEdge, anglePointPredecessor, anglePointSuccessor)) { if ((isGammaAngleBtw(angleGammaAndPoint, anglePointPredecessor, angleFlushEdge)) || (almostEqual(angleGammaAndPoint, anglePointPredecessor))) { return intersectsAboveOrBelow(predecessor(polygonPointIndex), polygonPointIndex); } else if ((isGammaAngleBtw(angleGammaAndPoint, anglePointSuccessor, angleFlushEdge)) || (almostEqual(angleGammaAndPoint, anglePointSuccessor))) { return intersectsAboveOrBelow(successor(polygonPointIndex), polygonPointIndex); } } else { if ( (isGammaAngleBtw(angleGammaAndPoint, anglePointPredecessor, anglePointSuccessor)) || ( (isGammaAngleEqualTo(angleGammaAndPoint, anglePointPredecessor)) && (!isGammaAngleEqualTo(angleGammaAndPoint, angleFlushEdge)) ) || ( (isGammaAngleEqualTo(angleGammaAndPoint, anglePointSuccessor)) && (!isGammaAngleEqualTo(angleGammaAndPoint, angleFlushEdge)) ) ) { return INTERSECTS_BELOW; } } return INTERSECTS_CRITICAL; } //! If (gamma(x) x) intersects P between successorOrPredecessorIndex and pointIntex is it above/below? /*! * @param succPredIndex Index of the successor or predecessor * @param pointIndex Index of the point x in the polygon */ static unsigned int intersectsAboveOrBelow(unsigned int succPredIndex, unsigned int pointIndex) { if (height(succPredIndex) > height(pointIndex)) { return INTERSECTS_ABOVE; } else { return INTERSECTS_BELOW; } } //! Find gamma for a given point "p" specified by its index /*! * The function returns true if gamma exists i.e. if lines (a a-1) and (x y) intersect * and false otherwise. In case the two lines intersect in point intersectionPoint, gamma is computed. * * Considering that line (x y) is a line parallel to (c c-1) and that the distance between the lines is equal * to 2 * height(p), we can have two possible (x y) lines. * * Therefore, we will compute two intersection points between the lines (x y) and (a a-1) and take the * point which is closest to point polygon[a]. * * See paper [2] and formula for distance from point to a line for more details * * @param polygonPointIndex Index of the polygon point * @param gammaPoint Point gamma(polygon[polygonPointIndex]) */ static bool gamma(unsigned int polygonPointIndex, cv::Point2f &gammaPoint) { cv::Point2f intersectionPoint1, intersectionPoint2; // Get intersection points if they exist if (!findGammaIntersectionPoints(polygonPointIndex, polygon[a], polygon[predecessor(a)], polygon[c], polygon[predecessor(c)], intersectionPoint1, intersectionPoint2)) { return false; } // Select the point which is on the same side of line C as the polygon if (areOnTheSameSideOfLine(intersectionPoint1, polygon[successor(c)], polygon[c], polygon[predecessor(c)])) { gammaPoint = intersectionPoint1; } else { gammaPoint = intersectionPoint2; } return true; } //! Find the intersection points to compute gamma(point) /*! * @param polygonPointIndex Index of the polygon point for which the distance is known * @param side1StartVertex Start vertex for side 1 * @param side1EndVertex End vertex for side 1 * @param side2StartVertex Start vertex for side 2 * @param side2EndVertex End vertex for side 2 * @param intersectionPoint1 First intersection point between one pair of lines * @param intersectionPoint2 Second intersection point between another pair of lines */ static bool findGammaIntersectionPoints(unsigned int polygonPointIndex, const cv::Point2f &side1StartVertex, const cv::Point2f &side1EndVertex, const cv::Point2f &side2StartVertex, const cv::Point2f &side2EndVertex, cv::Point2f &intersectionPoint1, cv::Point2f &intersectionPoint2) { std::vector side1Params = lineEquationParameters(side1StartVertex, side1EndVertex); std::vector side2Params = lineEquationParameters(side2StartVertex, side2EndVertex); // Compute side C extra parameter using the formula for distance from a point to a line double polygonPointHeight = height(polygonPointIndex); double distFormulaDenom = sqrt((side2Params[0] * side2Params[0]) + (side2Params[1] * side2Params[1])); double sideCExtraParam = 2 * polygonPointHeight * distFormulaDenom; // Get intersection points if they exist or if lines are identical if (!areIntersectingLines(side1Params, side2Params, sideCExtraParam, intersectionPoint1, intersectionPoint2)) { return false; } else if (areIdenticalLines(side1Params, side2Params, sideCExtraParam)) { intersectionPoint1 = side1StartVertex; intersectionPoint2 = side1EndVertex; } return true; } //! Check if the given lines are identical or not /*! * The lines are specified as: * ax + by + c = 0 * OR * ax + by + c (+/-) sideCExtraParam = 0 * * @param side1Params Vector containing the values of a, b and c for side 1 * @param side2Params Vector containing the values of a, b and c for side 2 * @param sideCExtraParam Extra parameter for the flush edge C */ static bool areIdenticalLines(const std::vector &side1Params, const std::vector &side2Params, double sideCExtraParam) { return ( (areIdenticalLines(side1Params[0], side1Params[1], -(side1Params[2]), side2Params[0], side2Params[1], -(side2Params[2]) - sideCExtraParam)) || (areIdenticalLines(side1Params[0], side1Params[1], -(side1Params[2]), side2Params[0], side2Params[1], -(side2Params[2]) + sideCExtraParam)) ); } //! Check if the given lines intersect or not. If the lines intersect find their intersection points. /*! * The lines are specified as: * ax + by + c = 0 * OR * ax + by + c (+/-) sideCExtraParam = 0 * * @param side1Params Vector containing the values of a, b and c for side 1 * @param side2Params Vector containing the values of a, b and c for side 2 * @param sideCExtraParam Extra parameter for the flush edge C * @param intersectionPoint1 The first intersection point, if it exists * @param intersectionPoint2 The second intersection point, if it exists */ static bool areIntersectingLines(const std::vector &side1Params, const std::vector &side2Params, double sideCExtraParam, cv::Point2f &intersectionPoint1, cv::Point2f &intersectionPoint2) { return ( (lineIntersection(side1Params[0], side1Params[1], -(side1Params[2]), side2Params[0], side2Params[1], -(side2Params[2]) - sideCExtraParam, intersectionPoint1)) && (lineIntersection(side1Params[0], side1Params[1], -(side1Params[2]), side2Params[0], side2Params[1], -(side2Params[2]) + sideCExtraParam, intersectionPoint2)) ); } //! Get the line equation parameters "a", "b" and "c" for the line determined by points "p" and "q" /*! * The equation of the line is considered in the general form: * ax + by + c = 0 * * @param p One point for defining the equation of the line * @param q Second point for defining the equation of the line */ static std::vector lineEquationParameters(const cv::Point2f& p, const cv::Point2f &q) { std::vector lineEquationParameters; double a, b, c; lineEquationDeterminedByPoints(p, q, a, b, c); lineEquationParameters.push_back(a); lineEquationParameters.push_back(b); lineEquationParameters.push_back(c); return lineEquationParameters; } //! Find vertex C which lies on side B at a distance = 2 * height(a-1) from side C /*! * Considering that line (x y) is a line parallel to (c c-1) and that the distance between the lines is equal * to 2 * height(a-1), we can have two possible (x y) lines. * * Therefore, we will compute two intersection points between the lines (x y) and (b b-1) and take the * point which is closest to point polygon[b]. * * See paper [2] and formula for distance from point to a line for more details */ static cv::Point2f findVertexCOnSideB() { cv::Point2f intersectionPoint1, intersectionPoint2; // Get intersection points if they exist if (!findGammaIntersectionPoints(predecessor(a), sideBStartVertex, sideBEndVertex, sideCStartVertex, sideCEndVertex, intersectionPoint1, intersectionPoint2)) { CV_Error(cv::Error::StsInternal, ERR_VERTEX_C_ON_SIDE_B); } // Select the point which is on the same side of line C as the polygon if (areOnTheSameSideOfLine(intersectionPoint1, polygon[successor(c)], polygon[c], polygon[predecessor(c)])) { return intersectionPoint1; } else { return intersectionPoint2; } } //! Compute the height of the point /*! * See paper [2] for more details * * @param polygonPoint Polygon point */ static double height(const cv::Point2f &polygonPoint) { cv::Point2f pointC = polygon[c]; cv::Point2f pointCPredecessor = polygon[predecessor(c)]; return distanceFromPointToLine(polygonPoint, pointC, pointCPredecessor); } //! Compute the height of the point specified by the given index /*! * See paper [2] for more details * * @param polygonPointIndex Index of the polygon point */ static double height(unsigned int polygonPointIndex) { cv::Point2f pointC = polygon[c]; cv::Point2f pointCPredecessor = polygon[predecessor(c)]; cv::Point2f polygonPoint = polygon[polygonPointIndex]; return distanceFromPointToLine(polygonPoint, pointC, pointCPredecessor); } //! Advance the given index with one position /*! * @param index Index of the point */ static void advance(unsigned int &index) { index = successor(index); } //! Return the succesor of the provided point index /*! * The succesor of the last polygon point is the first polygon point * (circular referencing) * * @param index Index of the point */ static unsigned int successor(unsigned int index) { return ((index + 1) % nrOfPoints); } //! Return the predecessor of the provided point index /*! * The predecessor of the first polygon point is the last polygon point * (circular referencing) * * @param index Index of the point */ static unsigned int predecessor(unsigned int index) { return (index == 0) ? (nrOfPoints - 1) : (index - 1); } //! Check if the flush edge angle/opposite angle lie between the predecessor and successor angle /*! * Check if the angle of the flush edge or its opposite angle lie between the angle of * the predecessor and successor * * @param angleFlushEdge Angle of the flush edge * @param anglePred Angle of the predecessor * @param angleSucc Angle of the successor */ static bool isFlushAngleBtwPredAndSucc(double &angleFlushEdge, double anglePred, double angleSucc) { if (isAngleBetweenNonReflex(angleFlushEdge, anglePred, angleSucc)) { return true; } else if (isOppositeAngleBetweenNonReflex(angleFlushEdge, anglePred, angleSucc)) { angleFlushEdge = oppositeAngle(angleFlushEdge); return true; } return false; } //! Check if the angle of the line (gamma(p) p) or its opposite angle is equal to the given angle /*! * @param gammaAngle Angle of the line (gamma(p) p) * @param angle Angle to compare against */ static bool isGammaAngleEqualTo(double &gammaAngle, double angle) { return (almostEqual(gammaAngle, angle)); } //! Check if the angle of the line (gamma(p) p) or its opposite angle lie between angle1 and angle2 /*! * @param gammaAngle Angle of the line (gamma(p) p) * @param angle1 One of the boundary angles * @param angle2 Another boundary angle */ static bool isGammaAngleBtw(double &gammaAngle, double angle1, double angle2) { return (isAngleBetweenNonReflex(gammaAngle, angle1, angle2)); } //! Get the angle of the line measured from the Ox axis in counterclockwise direction /*! * The line is specified by points "a" and "b". The value of the angle is expressed in degrees. * * @param a Point a * @param b Point b */ static double angleOfLineWrtOxAxis(const cv::Point2f &a, const cv::Point2f &b) { double y = b.y - a.y; double x = b.x - a.x; double angle = (std::atan2(y, x) * 180 / CV_PI); return (angle < 0) ? (angle + 360) : angle; } //! Check if angle1 lies between non reflex angle determined by angles 2 and 3 /*! * @param angle1 The angle which lies between angle2 and angle3 or not * @param angle2 One of the boundary angles * @param angle3 The other boundary angle */ static bool isAngleBetweenNonReflex(double angle1, double angle2, double angle3) { if (std::abs(angle2 - angle3) > 180) { if (angle2 > angle3) { return (((angle2 < angle1) && (lessOrEqual(angle1, 360))) || ((lessOrEqual(0, angle1)) && (angle1 < angle3))); } else { return (((angle3 < angle1) && (lessOrEqual(angle1, 360))) || ((lessOrEqual(0, angle1)) && (angle1 < angle2))); } } else { return isAngleBetween(angle1, angle2, angle3); } } //! Check if the opposite of angle1, ((angle1 + 180) % 360), lies between non reflex angle determined by angles 2 and 3 /*! * @param angle1 The angle which lies between angle2 and angle3 or not * @param angle2 One of the boundary angles * @param angle3 The other boundary angle */ static bool isOppositeAngleBetweenNonReflex(double angle1, double angle2, double angle3) { double angle1Opposite = oppositeAngle(angle1); return (isAngleBetweenNonReflex(angle1Opposite, angle2, angle3)); } //! Check if angle1 lies between angles 2 and 3 /*! * @param angle1 The angle which lies between angle2 and angle3 or not * @param angle2 One of the boundary angles * @param angle3 The other boundary angle */ static bool isAngleBetween(double angle1, double angle2, double angle3) { if ((((int)(angle2 - angle3)) % 180) > 0) { return ((angle3 < angle1) && (angle1 < angle2)); } else { return ((angle2 < angle1) && (angle1 < angle3)); } } //! Return the angle opposite to the given angle /*! * if (angle < 180) then * return (angle + 180); * else * return (angle - 180); * endif * * @param angle Angle */ static double oppositeAngle(double angle) { return (angle > 180) ? (angle - 180) : (angle + 180); } //! Compute the distance from a point "a" to a line specified by two points "B" and "C" /*! * Formula used: * * |(x_c - x_b) * (y_b - y_a) - (x_b - x_a) * (y_c - y_b)| * d = ------------------------------------------------------- * sqrt(((x_c - x_b)^2) + ((y_c - y_b)^2)) * * Reference: http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html * * @param a Point from which the distance is measures * @param linePointB One of the points determining the line * @param linePointC One of the points determining the line */ static double distanceFromPointToLine(const cv::Point2f &a, const cv::Point2f &linePointB, const cv::Point2f &linePointC) { double term1 = linePointC.x - linePointB.x; double term2 = linePointB.y - a.y; double term3 = linePointB.x - a.x; double term4 = linePointC.y - linePointB.y; double nominator = std::abs((term1 * term2) - (term3 * term4)); double denominator = std::sqrt((term1 * term1) + (term4 * term4)); return (nominator / denominator); } //! Compute the distance between two points /*! Compute the Euclidean distance between two points * * @param a Point a * @param b Point b */ static double distanceBtwPoints(const cv::Point2f &a, const cv::Point2f &b) { double xDiff = a.x - b.x; double yDiff = a.y - b.y; return std::sqrt((xDiff * xDiff) + (yDiff * yDiff)); } //! Compute the area of a triangle defined by three points /*! * The area is computed using the determinant method. * An example is presented at http://demonstrations.wolfram.com/TheAreaOfATriangleUsingADeterminant/ * (Last access: 10.07.2013) * * @param a Point a * @param b Point b * @param c Point c */ static double areaOfTriangle(const cv::Point2f &a, const cv::Point2f &b, const cv::Point2f &c) { double posTerm = (a.x * b.y) + (a.y * c.x) + (b.x * c.y); double negTerm = (b.y * c.x) + (a.x * c.y) + (a.y * b.x); double determinant = posTerm - negTerm; return std::abs(determinant) / 2; } //! Get the point in the middle of the segment determined by points "a" and "b" /*! * @param a Point a * @param b Point b */ static cv::Point2f middlePoint(const cv::Point2f &a, const cv::Point2f &b) { double middleX = (double)((a.x + b.x) / 2); double middleY = (double)((a.y + b.y) / 2); return cv::Point2f((float) middleX, (float) middleY); } //! Determine the intersection point of two lines, if this point exists /*! Two lines intersect if they are not parallel (Parallel lines intersect at * +/- infinity, but we do not consider this case here). * * The lines are specified in the following form: * A1x + B1x = C1 * A2x + B2x = C2 * * If det (= A1xB2 - A2xB1) == 0, then lines are parallel * else they intersect * * If they intersect, then let us denote the intersection point with P(x, y) where: * x = (C1xB2 - C2xB1) / (det) * y = (C2xA1 - C1xA2) / (det) * * @param a1 A1 * @param b1 B1 * @param c1 C1 * @param a2 A2 * @param b2 B2 * @param c2 C2 * @param intersection The intersection point, if this point exists */ static bool lineIntersection(double a1, double b1, double c1, double a2, double b2, double c2, cv::Point2f &intersection) { double det = (a1 * b2) - (a2 * b1); if (!(almostEqual(det, 0))) { intersection.x = (float)(((c1 * b2) - (c2 * b1)) / (det)); intersection.y = (float)(((c2 * a1) - (c1 * a2)) / (det)); return true; } return false; } //! Determine the intersection point of two lines, if this point exists /*! Two lines intersect if they are not parallel (Parallel lines intersect at * +/- infinity, but we do not consider this case here). * * The lines are specified by a pair of points each. If they intersect, then * the function returns true, else it returns false. * * Lines can be specified in the following form: * A1x + B1x = C1 * A2x + B2x = C2 * * If det (= A1xB2 - A2xB1) == 0, then lines are parallel * else they intersect * * If they intersect, then let us denote the intersection point with P(x, y) where: * x = (C1xB2 - C2xB1) / (det) * y = (C2xA1 - C1xA2) / (det) * * @param a1 First point for determining the first line * @param b1 Second point for determining the first line * @param a2 First point for determining the second line * @param b2 Second point for determining the second line * @param intersection The intersection point, if this point exists */ static bool lineIntersection(const cv::Point2f &a1, const cv::Point2f &b1, const cv::Point2f &a2, const cv::Point2f &b2, cv::Point2f &intersection) { double A1 = b1.y - a1.y; double B1 = a1.x - b1.x; double C1 = (a1.x * A1) + (a1.y * B1); double A2 = b2.y - a2.y; double B2 = a2.x - b2.x; double C2 = (a2.x * A2) + (a2.y * B2); double det = (A1 * B2) - (A2 * B1); if (!almostEqual(det, 0)) { intersection.x = (float)(((C1 * B2) - (C2 * B1)) / (det)); intersection.y = (float)(((C2 * A1) - (C1 * A2)) / (det)); return true; } return false; } //! Get the values of "a", "b" and "c" of the line equation ax + by + c = 0 knowing that point "p" and "q" are on the line /*! * a = q.y - p.y * b = p.x - q.x * c = - (p.x * a) - (p.y * b) * * @param p Point p * @param q Point q * @param a Parameter "a" from the line equation * @param b Parameter "b" from the line equation * @param c Parameter "c" from the line equation */ static void lineEquationDeterminedByPoints(const cv::Point2f &p, const cv::Point2f &q, double &a, double &b, double &c) { CV_Assert(areEqualPoints(p, q) == false); a = q.y - p.y; b = p.x - q.x; c = ((-p.y) * b) - (p.x * a); } //! Check if p1 and p2 are on the same side of the line determined by points a and b /*! * @param p1 Point p1 * @param p2 Point p2 * @param a First point for determining line * @param b Second point for determining line */ static bool areOnTheSameSideOfLine(const cv::Point2f &p1, const cv::Point2f &p2, const cv::Point2f &a, const cv::Point2f &b) { double a1, b1, c1; lineEquationDeterminedByPoints(a, b, a1, b1, c1); double p1OnLine = (a1 * p1.x) + (b1 * p1.y) + c1; double p2OnLine = (a1 * p2.x) + (b1 * p2.y) + c1; return (sign(p1OnLine) == sign(p2OnLine)); } //! Check if one point lies between two other points /*! * @param point Point lying possibly outside the line segment * @param lineSegmentStart First point determining the line segment * @param lineSegmentEnd Second point determining the line segment */ static bool isPointOnLineSegment(const cv::Point2f &point, const cv::Point2f &lineSegmentStart, const cv::Point2f &lineSegmentEnd) { double d1 = distanceBtwPoints(point, lineSegmentStart); double d2 = distanceBtwPoints(point, lineSegmentEnd); double lineSegmentLength = distanceBtwPoints(lineSegmentStart, lineSegmentEnd); return (almostEqual(d1 + d2, lineSegmentLength)); } //! Check if two lines are identical /*! * Lines are be specified in the following form: * A1x + B1x = C1 * A2x + B2x = C2 * * If (A1/A2) == (B1/B2) == (C1/C2), then the lines are identical * else they are not * * @param a1 A1 * @param b1 B1 * @param c1 C1 * @param a2 A2 * @param b2 B2 * @param c2 C2 */ static bool areIdenticalLines(double a1, double b1, double c1, double a2, double b2, double c2) { double a1B2 = a1 * b2; double a2B1 = a2 * b1; double a1C2 = a1 * c2; double a2C1 = a2 * c1; double b1C2 = b1 * c2; double b2C1 = b2 * c1; return ((almostEqual(a1B2, a2B1)) && (almostEqual(b1C2, b2C1)) && (almostEqual(a1C2, a2C1))); } //! Check if points point1 and point2 are equal or not /*! * @param point1 One point * @param point2 The other point */ static bool areEqualPoints(const cv::Point2f &point1, const cv::Point2f &point2) { return (almostEqual(point1.x, point2.x) && almostEqual(point1.y, point2.y)); } //! Return the sign of the number /*! * The sign function returns: * -1, if number < 0 * +1, if number > 0 * 0, otherwise */ static int sign(double number) { return (number > 0) ? 1 : ((number < 0) ? -1 : 0); } //! Return the maximum of the provided numbers static double maximum(double number1, double number2, double number3) { return std::max(std::max(number1, number2), number3); } //! Check if the two numbers are equal (almost) /*! * The expression for determining if two real numbers are equal is: * if (Abs(x - y) <= EPSILON * Max(1.0f, Abs(x), Abs(y))). * * @param number1 First number * @param number2 Second number */ static bool almostEqual(double number1, double number2) { return (std::abs(number1 - number2) <= (EPSILON * maximum(1.0, std::abs(number1), std::abs(number2)))); } //! Check if the first number is greater than or equal to the second number /*! * @param number1 First number * @param number2 Second number */ static bool greaterOrEqual(double number1, double number2) { return ((number1 > number2) || (almostEqual(number1, number2))); } //! Check if the first number is less than or equal to the second number /*! * @param number1 First number * @param number2 Second number */ static bool lessOrEqual(double number1, double number2) { return ((number1 < number2) || (almostEqual(number1, number2))); } /* End of file. */