from __future__ import print_function import cv2 as cv import numpy as np import argparse parser = argparse.ArgumentParser( description='This script is used to run style transfer models from ' 'https://github.com/jcjohnson/fast-neural-style using OpenCV') parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') parser.add_argument('--model', help='Path to .t7 model') parser.add_argument('--width', default=-1, type=int, help='Resize input to specific width.') parser.add_argument('--height', default=-1, type=int, help='Resize input to specific height.') parser.add_argument('--median_filter', default=0, type=int, help='Kernel size of postprocessing blurring.') args = parser.parse_args() net = cv.dnn.readNetFromTorch(args.model) net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV); if args.input: cap = cv.VideoCapture(args.input) else: cap = cv.VideoCapture(0) cv.namedWindow('Styled image', cv.WINDOW_NORMAL) while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: cv.waitKey() break inWidth = args.width if args.width != -1 else frame.shape[1] inHeight = args.height if args.height != -1 else frame.shape[0] inp = cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (103.939, 116.779, 123.68), swapRB=False, crop=False) net.setInput(inp) out = net.forward() out = out.reshape(3, out.shape[2], out.shape[3]) out[0] += 103.939 out[1] += 116.779 out[2] += 123.68 out /= 255 out = out.transpose(1, 2, 0) t, _ = net.getPerfProfile() freq = cv.getTickFrequency() / 1000 print(t / freq, 'ms') if args.median_filter: out = cv.medianBlur(out, args.median_filter) cv.imshow('Styled image', out)