/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { CV_SLMLTest::CV_SLMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName ) { validationFN = "slvalidation.xml"; } int CV_SLMLTest::run_test_case( int testCaseIdx ) { int code = cvtest::TS::OK; code = prepare_test_case( testCaseIdx ); if( code == cvtest::TS::OK ) { data->setTrainTestSplit(data->getNTrainSamples(), true); code = train( testCaseIdx ); if( code == cvtest::TS::OK ) { get_test_error( testCaseIdx, &test_resps1 ); fname1 = tempfile(".json.gz"); save( (fname1 + "?base64").c_str() ); load( fname1.c_str() ); get_test_error( testCaseIdx, &test_resps2 ); fname2 = tempfile(".json.gz"); save( (fname2 + "?base64").c_str() ); } else ts->printf( cvtest::TS::LOG, "model can not be trained" ); } return code; } int CV_SLMLTest::validate_test_results( int testCaseIdx ) { int code = cvtest::TS::OK; // 1. compare files FILE *fs1 = fopen(fname1.c_str(), "rb"), *fs2 = fopen(fname2.c_str(), "rb"); size_t sz1 = 0, sz2 = 0; if( !fs1 || !fs2 ) code = cvtest::TS::FAIL_MISSING_TEST_DATA; if( code >= 0 ) { fseek(fs1, 0, SEEK_END); fseek(fs2, 0, SEEK_END); sz1 = ftell(fs1); sz2 = ftell(fs2); fseek(fs1, 0, SEEK_SET); fseek(fs2, 0, SEEK_SET); } if( sz1 != sz2 ) code = cvtest::TS::FAIL_INVALID_OUTPUT; if( code >= 0 ) { const int BUFSZ = 1024; uchar buf1[BUFSZ], buf2[BUFSZ]; for( size_t pos = 0; pos < sz1; ) { size_t r1 = fread(buf1, 1, BUFSZ, fs1); size_t r2 = fread(buf2, 1, BUFSZ, fs2); if( r1 != r2 || memcmp(buf1, buf2, r1) != 0 ) { ts->printf( cvtest::TS::LOG, "in test case %d first (%s) and second (%s) saved files differ in %d-th kb\n", testCaseIdx, fname1.c_str(), fname2.c_str(), (int)pos ); code = cvtest::TS::FAIL_INVALID_OUTPUT; break; } pos += r1; } } if(fs1) fclose(fs1); if(fs2) fclose(fs2); // delete temporary files if( code >= 0 ) { remove( fname1.c_str() ); remove( fname2.c_str() ); } if( code >= 0 ) { // 2. compare responses CV_Assert( test_resps1.size() == test_resps2.size() ); vector::const_iterator it1 = test_resps1.begin(), it2 = test_resps2.begin(); for( ; it1 != test_resps1.end(); ++it1, ++it2 ) { if( fabs(*it1 - *it2) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "in test case %d responses predicted before saving and after loading is different", testCaseIdx ); code = cvtest::TS::FAIL_INVALID_OUTPUT; break; } } } return code; } namespace { TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); } TEST(ML_KNearest, save_load) { CV_SLMLTest test( CV_KNEAREST ); test.safe_run(); } TEST(ML_SVM, save_load) { CV_SLMLTest test( CV_SVM ); test.safe_run(); } TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); } TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); } TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); } TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); } TEST(DISABLED_ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); } TEST(MV_SVMSGD, save_load){ CV_SLMLTest test( CV_SVMSGD ); test.safe_run(); } class CV_LegacyTest : public cvtest::BaseTest { public: CV_LegacyTest(const std::string &_modelName, const std::string &_suffixes = std::string()) : cvtest::BaseTest(), modelName(_modelName), suffixes(_suffixes) { } virtual ~CV_LegacyTest() {} protected: void run(int) { unsigned int idx = 0; for (;;) { if (idx >= suffixes.size()) break; int found = (int)suffixes.find(';', idx); string piece = suffixes.substr(idx, found - idx); if (piece.empty()) break; oneTest(piece); idx += (unsigned int)piece.size() + 1; } } void oneTest(const string & suffix) { using namespace cv::ml; int code = cvtest::TS::OK; string filename = ts->get_data_path() + "legacy/" + modelName + suffix; bool isTree = modelName == CV_BOOST || modelName == CV_DTREE || modelName == CV_RTREES; Ptr model; if (modelName == CV_BOOST) model = Algorithm::load(filename); else if (modelName == CV_ANN) model = Algorithm::load(filename); else if (modelName == CV_DTREE) model = Algorithm::load(filename); else if (modelName == CV_NBAYES) model = Algorithm::load(filename); else if (modelName == CV_SVM) model = Algorithm::load(filename); else if (modelName == CV_RTREES) model = Algorithm::load(filename); else if (modelName == CV_SVMSGD) model = Algorithm::load(filename); if (!model) { code = cvtest::TS::FAIL_INVALID_TEST_DATA; } else { Mat input = Mat(isTree ? 10 : 1, model->getVarCount(), CV_32F); ts->get_rng().fill(input, RNG::UNIFORM, 0, 40); if (isTree) randomFillCategories(filename, input); Mat output; model->predict(input, output, StatModel::RAW_OUTPUT | (isTree ? DTrees::PREDICT_SUM : 0)); // just check if no internal assertions or errors thrown } ts->set_failed_test_info(code); } void randomFillCategories(const string & filename, Mat & input) { Mat catMap; Mat catCount; std::vector varTypes; FileStorage fs(filename, FileStorage::READ); FileNode root = fs.getFirstTopLevelNode(); root["cat_map"] >> catMap; root["cat_count"] >> catCount; root["var_type"] >> varTypes; int offset = 0; int countOffset = 0; uint var = 0, varCount = (uint)varTypes.size(); for (; var < varCount; ++var) { if (varTypes[var] == ml::VAR_CATEGORICAL) { int size = catCount.at(0, countOffset); for (int row = 0; row < input.rows; ++row) { int randomChosenIndex = offset + ((uint)ts->get_rng()) % size; int value = catMap.at(0, randomChosenIndex); input.at(row, var) = (float)value; } offset += size; ++countOffset; } } } string modelName; string suffixes; }; TEST(ML_ANN, legacy_load) { CV_LegacyTest test(CV_ANN, "_waveform.xml"); test.safe_run(); } TEST(ML_Boost, legacy_load) { CV_LegacyTest test(CV_BOOST, "_adult.xml;_1.xml;_2.xml;_3.xml"); test.safe_run(); } TEST(ML_DTree, legacy_load) { CV_LegacyTest test(CV_DTREE, "_abalone.xml;_mushroom.xml"); test.safe_run(); } TEST(ML_NBayes, legacy_load) { CV_LegacyTest test(CV_NBAYES, "_waveform.xml"); test.safe_run(); } TEST(ML_SVM, legacy_load) { CV_LegacyTest test(CV_SVM, "_poletelecomm.xml;_waveform.xml"); test.safe_run(); } TEST(ML_RTrees, legacy_load) { CV_LegacyTest test(CV_RTREES, "_waveform.xml"); test.safe_run(); } TEST(ML_SVMSGD, legacy_load) { CV_LegacyTest test(CV_SVMSGD, "_waveform.xml"); test.safe_run(); } /*TEST(ML_SVM, throw_exception_when_save_untrained_model) { Ptr svm; string filename = tempfile("svm.xml"); ASSERT_THROW(svm.save(filename.c_str()), Exception); remove(filename.c_str()); }*/ TEST(DISABLED_ML_SVM, linear_save_load) { Ptr svm1, svm2, svm3; svm1 = Algorithm::load("SVM45_X_38-1.xml"); svm2 = Algorithm::load("SVM45_X_38-2.xml"); string tname = tempfile("a.json"); svm2->save(tname + "?base64"); svm3 = Algorithm::load(tname); ASSERT_EQ(svm1->getVarCount(), svm2->getVarCount()); ASSERT_EQ(svm1->getVarCount(), svm3->getVarCount()); int m = 10000, n = svm1->getVarCount(); Mat samples(m, n, CV_32F), r1, r2, r3; randu(samples, 0., 1.); svm1->predict(samples, r1); svm2->predict(samples, r2); svm3->predict(samples, r3); double eps = 1e-4; EXPECT_LE(cvtest::norm(r1, r2, NORM_INF), eps); EXPECT_LE(cvtest::norm(r1, r3, NORM_INF), eps); remove(tname.c_str()); } }} // namespace /* End of file. */