#include "opencv2/legacy/legacy.hpp" #include "opencv2/highgui/highgui.hpp" using namespace cv; int main( int /*argc*/, char** /*argv*/ ) { const int N = 4; const int N1 = (int)sqrt((double)N); const Scalar colors[] = { Scalar(0,0,255), Scalar(0,255,0), Scalar(0,255,255),Scalar(255,255,0) }; int i, j; int nsamples = 100; Mat samples( nsamples, 2, CV_32FC1 ); Mat labels; Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 ); Mat sample( 1, 2, CV_32FC1 ); CvEM em_model; CvEMParams params; samples = samples.reshape(2, 0); for( i = 0; i < N; i++ ) { // form the training samples Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N ); Scalar mean(((i%N1)+1)*img.rows/(N1+1), ((i/N1)+1)*img.rows/(N1+1)); Scalar sigma(30,30); randn( samples_part, mean, sigma ); } samples = samples.reshape(1, 0); // initialize model parameters params.covs = NULL; params.means = NULL; params.weights = NULL; params.probs = NULL; params.nclusters = N; params.cov_mat_type = CvEM::COV_MAT_SPHERICAL; params.start_step = CvEM::START_AUTO_STEP; params.term_crit.max_iter = 300; params.term_crit.epsilon = 0.1; params.term_crit.type = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS; // cluster the data em_model.train( samples, Mat(), params, &labels ); #if 0 // the piece of code shows how to repeatedly optimize the model // with less-constrained parameters //(COV_MAT_DIAGONAL instead of COV_MAT_SPHERICAL) // when the output of the first stage is used as input for the second one. CvEM em_model2; params.cov_mat_type = CvEM::COV_MAT_DIAGONAL; params.start_step = CvEM::START_E_STEP; params.means = em_model.get_means(); params.covs = em_model.get_covs(); params.weights = em_model.get_weights(); em_model2.train( samples, Mat(), params, &labels ); // to use em_model2, replace em_model.predict() // with em_model2.predict() below #endif // classify every image pixel for( i = 0; i < img.rows; i++ ) { for( j = 0; j < img.cols; j++ ) { sample.at(0) = (float)j; sample.at(1) = (float)i; int response = cvRound(em_model.predict( sample )); Scalar c = colors[response]; circle( img, Point(j, i), 1, c*0.75, CV_FILLED ); } } //draw the clustered samples for( i = 0; i < nsamples; i++ ) { Point pt(cvRound(samples.at(i, 0)), cvRound(samples.at(i, 1))); circle( img, pt, 1, colors[labels.at(i)], CV_FILLED ); } imshow( "EM-clustering result", img ); waitKey(0); return 0; }