/////////////////////////////////////////////////////////////////////////////////////// // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // This is a implementation of the Logistic Regression algorithm in C++ in OpenCV. // AUTHOR: // Rahul Kavi rahulkavi[at]live[at]com // // contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris") // # You are free to use, change, or redistribute the code in any way you wish for // # non-commercial purposes, but please maintain the name of the original author. // # This code comes with no warranty of any kind. // # // # You are free to use, change, or redistribute the code in any way you wish for // # non-commercial purposes, but please maintain the name of the original author. // # This code comes with no warranty of any kind. // # Logistic Regression ALGORITHM // License Agreement // For Open Source Computer Vision Library // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. #include "test_precomp.hpp" using namespace std; using namespace cv; using namespace cv::ml; static bool calculateError( const Mat& _p_labels, const Mat& _o_labels, float& error) { error = 0.0f; float accuracy = 0.0f; Mat _p_labels_temp; Mat _o_labels_temp; _p_labels.convertTo(_p_labels_temp, CV_32S); _o_labels.convertTo(_o_labels_temp, CV_32S); CV_Assert(_p_labels_temp.total() == _o_labels_temp.total()); CV_Assert(_p_labels_temp.rows == _o_labels_temp.rows); accuracy = (float)countNonZero(_p_labels_temp == _o_labels_temp)/_p_labels_temp.rows; error = 1 - accuracy; return true; } //-------------------------------------------------------------------------------------------- class CV_LRTest : public cvtest::BaseTest { public: CV_LRTest() {} protected: virtual void run( int start_from ); }; void CV_LRTest::run( int /*start_from*/ ) { // initialize varibles from the popular Iris Dataset string dataFileName = ts->get_data_path() + "iris.data"; Ptr tdata = TrainData::loadFromCSV(dataFileName, 0); // run LR classifier train classifier Ptr p = LogisticRegression::create(); p->setLearningRate(1.0); p->setIterations(10001); p->setRegularization(LogisticRegression::REG_L2); p->setTrainMethod(LogisticRegression::BATCH); p->setMiniBatchSize(10); p->train(tdata); // predict using the same data Mat responses; p->predict(tdata->getSamples(), responses); // calculate error int test_code = cvtest::TS::OK; float error = 0.0f; if(!calculateError(responses, tdata->getResponses(), error)) { ts->printf(cvtest::TS::LOG, "Bad prediction labels\n" ); test_code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if(error > 0.05f) { ts->printf(cvtest::TS::LOG, "Bad accuracy of (%f)\n", error); test_code = cvtest::TS::FAIL_BAD_ACCURACY; } { FileStorage s("debug.xml", FileStorage::WRITE); s << "original" << tdata->getResponses(); s << "predicted1" << responses; s << "learnt" << p->get_learnt_thetas(); s << "error" << error; s.release(); } ts->set_failed_test_info(test_code); } //-------------------------------------------------------------------------------------------- class CV_LRTest_SaveLoad : public cvtest::BaseTest { public: CV_LRTest_SaveLoad(){} protected: virtual void run(int start_from); }; void CV_LRTest_SaveLoad::run( int /*start_from*/ ) { int code = cvtest::TS::OK; // initialize varibles from the popular Iris Dataset string dataFileName = ts->get_data_path() + "iris.data"; Ptr tdata = TrainData::loadFromCSV(dataFileName, 0); Mat responses1, responses2; Mat learnt_mat1, learnt_mat2; // train and save the classifier String filename = tempfile(".xml"); try { // run LR classifier train classifier Ptr lr1 = LogisticRegression::create(); lr1->setLearningRate(1.0); lr1->setIterations(10001); lr1->setRegularization(LogisticRegression::REG_L2); lr1->setTrainMethod(LogisticRegression::BATCH); lr1->setMiniBatchSize(10); lr1->train(tdata); lr1->predict(tdata->getSamples(), responses1); learnt_mat1 = lr1->get_learnt_thetas(); lr1->save(filename); } catch(...) { ts->printf(cvtest::TS::LOG, "Crash in write method.\n" ); ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION); } // and load to another try { Ptr lr2 = StatModel::load(filename); lr2->predict(tdata->getSamples(), responses2); learnt_mat2 = lr2->get_learnt_thetas(); } catch(...) { ts->printf(cvtest::TS::LOG, "Crash in write method.\n" ); ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION); } CV_Assert(responses1.rows == responses2.rows); // compare difference in learnt matrices before and after loading from disk Mat comp_learnt_mats; comp_learnt_mats = (learnt_mat1 == learnt_mat2); comp_learnt_mats = comp_learnt_mats.reshape(1, comp_learnt_mats.rows*comp_learnt_mats.cols); comp_learnt_mats.convertTo(comp_learnt_mats, CV_32S); comp_learnt_mats = comp_learnt_mats/255; // compare difference in prediction outputs and stored inputs // check if there is any difference between computed learnt mat and retreived mat float errorCount = 0.0; errorCount += 1 - (float)countNonZero(responses1 == responses2)/responses1.rows; errorCount += 1 - (float)sum(comp_learnt_mats)[0]/comp_learnt_mats.rows; if(errorCount>0) { ts->printf( cvtest::TS::LOG, "Different prediction results before writing and after reading (errorCount=%d).\n", errorCount ); code = cvtest::TS::FAIL_BAD_ACCURACY; } remove( filename.c_str() ); ts->set_failed_test_info( code ); } TEST(ML_LR, accuracy) { CV_LRTest test; test.safe_run(); } TEST(ML_LR, save_load) { CV_LRTest_SaveLoad test; test.safe_run(); }