#include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" #include using namespace cv; static void help( void ) { printf("\nThis program illustrates Linear-Polar and Log-Polar image transforms\n" "Usage :\n" "./polar_transforms [[camera number -- Default 0],[path_to_filename]]\n\n"); } int main( int argc, char** argv ) { VideoCapture capture; Mat log_polar_img, lin_polar_img, recovered_log_polar, recovered_lin_polar_img; help(); CommandLineParser parser(argc, argv, "{@input|0|}"); std::string arg = parser.get("@input"); if( arg.size() == 1 && isdigit(arg[0]) ) capture.open( arg[0] - '0' ); else capture.open( arg.c_str() ); if( !capture.isOpened() ) { const char* name = argv[0]; fprintf(stderr,"Could not initialize capturing...\n"); fprintf(stderr,"Usage: %s , or \n %s \n", name, name); return -1; } namedWindow( "Linear-Polar", WINDOW_AUTOSIZE ); namedWindow( "Log-Polar", WINDOW_AUTOSIZE); namedWindow( "Recovered Linear-Polar", WINDOW_AUTOSIZE); namedWindow( "Recovered Log-Polar", WINDOW_AUTOSIZE); moveWindow( "Linear-Polar", 20,20 ); moveWindow( "Log-Polar", 700,20 ); moveWindow( "Recovered Linear-Polar", 20, 350 ); moveWindow( "Recovered Log-Polar", 700, 350 ); int flags = INTER_LINEAR + WARP_FILL_OUTLIERS; Mat src; for(;;) { capture >> src; if(src.empty() ) break; Point2f center( (float)src.cols / 2, (float)src.rows / 2 ); double maxRadius = 0.7*min(center.y, center.x); #if 0 //deprecated double M = frame.cols / log(maxRadius); logPolar(frame, log_polar_img, center, M, flags); linearPolar(frame, lin_polar_img, center, maxRadius, flags); logPolar(log_polar_img, recovered_log_polar, center, M, flags + WARP_INVERSE_MAP); linearPolar(lin_polar_img, recovered_lin_polar_img, center, maxRadius, flags + WARP_INVERSE_MAP); #endif //! [InverseMap] // direct transform warpPolar(src, lin_polar_img, Size(),center, maxRadius, flags); // linear Polar warpPolar(src, log_polar_img, Size(),center, maxRadius, flags + WARP_POLAR_LOG); // semilog Polar // inverse transform warpPolar(lin_polar_img, recovered_lin_polar_img, src.size(), center, maxRadius, flags + WARP_INVERSE_MAP); warpPolar(log_polar_img, recovered_log_polar, src.size(), center, maxRadius, flags + WARP_POLAR_LOG + WARP_INVERSE_MAP); //! [InverseMap] // Below is the reverse transformation for (rho, phi)->(x, y) : Mat dst; if (flags & WARP_POLAR_LOG) dst = log_polar_img; else dst = lin_polar_img; //get a point from the polar image int rho = cvRound(dst.cols * 0.75); int phi = cvRound(dst.rows / 2.0); //! [InverseCoordinate] double angleRad, magnitude; double Kangle = dst.rows / CV_2PI; angleRad = phi / Kangle; if (flags & WARP_POLAR_LOG) { double Klog = dst.cols / std::log(maxRadius); magnitude = std::exp(rho / Klog); } else { double Klin = dst.cols / maxRadius; magnitude = rho / Klin; } int x = cvRound(center.x + magnitude * cos(angleRad)); int y = cvRound(center.y + magnitude * sin(angleRad)); //! [InverseCoordinate] drawMarker(src, Point(x, y), Scalar(0, 255, 0)); drawMarker(dst, Point(rho, phi), Scalar(0, 255, 0)); #if 0 //C version CvMat src = frame; CvMat dst = lin_polar_img; CvMat inverse = recovered_lin_polar_img; cvLinearPolar(&src, &dst, center, maxRadius, flags); cvLinearPolar(&dst, &inverse, center, maxRadius,flags + WARP_INVERSE_MAP); #endif imshow("Src frame", src); imshow("Log-Polar", log_polar_img); imshow("Linear-Polar", lin_polar_img); imshow("Recovered Linear-Polar", recovered_lin_polar_img ); imshow("Recovered Log-Polar", recovered_log_polar ); if( waitKey(10) >= 0 ) break; } return 0; }