#!/usr/bin/env python ''' Wiener deconvolution. Sample shows how DFT can be used to perform Weiner deconvolution [1] of an image with user-defined point spread function (PSF) Usage: deconvolution.py [--circle] [--angle ] [--d ] [--snr ] [] Use sliders to adjust PSF paramitiers. Keys: SPACE - switch btw linear/cirular PSF ESC - exit Examples: deconvolution.py --angle 135 --d 22 ../data/licenseplate_motion.jpg (image source: http://www.topazlabs.com/infocus/_images/licenseplate_compare.jpg) deconvolution.py --angle 86 --d 31 ../data/text_motion.jpg deconvolution.py --circle --d 19 ../data/text_defocus.jpg (image source: compact digital photo camera, no artificial distortion) [1] http://en.wikipedia.org/wiki/Wiener_deconvolution ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv # local module from common import nothing def blur_edge(img, d=31): h, w = img.shape[:2] img_pad = cv.copyMakeBorder(img, d, d, d, d, cv.BORDER_WRAP) img_blur = cv.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d] y, x = np.indices((h, w)) dist = np.dstack([x, w-x-1, y, h-y-1]).min(-1) w = np.minimum(np.float32(dist)/d, 1.0) return img*w + img_blur*(1-w) def motion_kernel(angle, d, sz=65): kern = np.ones((1, d), np.float32) c, s = np.cos(angle), np.sin(angle) A = np.float32([[c, -s, 0], [s, c, 0]]) sz2 = sz // 2 A[:,2] = (sz2, sz2) - np.dot(A[:,:2], ((d-1)*0.5, 0)) kern = cv.warpAffine(kern, A, (sz, sz), flags=cv.INTER_CUBIC) return kern def defocus_kernel(d, sz=65): kern = np.zeros((sz, sz), np.uint8) cv.circle(kern, (sz, sz), d, 255, -1, cv.LINE_AA, shift=1) kern = np.float32(kern) / 255.0 return kern if __name__ == '__main__': print(__doc__) import sys, getopt opts, args = getopt.getopt(sys.argv[1:], '', ['circle', 'angle=', 'd=', 'snr=']) opts = dict(opts) try: fn = args[0] except: fn = '../data/licenseplate_motion.jpg' win = 'deconvolution' img = cv.imread(fn, 0) if img is None: print('Failed to load file:', fn) sys.exit(1) img = np.float32(img)/255.0 cv.imshow('input', img) img = blur_edge(img) IMG = cv.dft(img, flags=cv.DFT_COMPLEX_OUTPUT) defocus = '--circle' in opts def update(_): ang = np.deg2rad( cv.getTrackbarPos('angle', win) ) d = cv.getTrackbarPos('d', win) noise = 10**(-0.1*cv.getTrackbarPos('SNR (db)', win)) if defocus: psf = defocus_kernel(d) else: psf = motion_kernel(ang, d) cv.imshow('psf', psf) psf /= psf.sum() psf_pad = np.zeros_like(img) kh, kw = psf.shape psf_pad[:kh, :kw] = psf PSF = cv.dft(psf_pad, flags=cv.DFT_COMPLEX_OUTPUT, nonzeroRows = kh) PSF2 = (PSF**2).sum(-1) iPSF = PSF / (PSF2 + noise)[...,np.newaxis] RES = cv.mulSpectrums(IMG, iPSF, 0) res = cv.idft(RES, flags=cv.DFT_SCALE | cv.DFT_REAL_OUTPUT ) res = np.roll(res, -kh//2, 0) res = np.roll(res, -kw//2, 1) cv.imshow(win, res) cv.namedWindow(win) cv.namedWindow('psf', 0) cv.createTrackbar('angle', win, int(opts.get('--angle', 135)), 180, update) cv.createTrackbar('d', win, int(opts.get('--d', 22)), 50, update) cv.createTrackbar('SNR (db)', win, int(opts.get('--snr', 25)), 50, update) update(None) while True: ch = cv.waitKey() if ch == 27: break if ch == ord(' '): defocus = not defocus update(None)