// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "test_precomp.hpp" #include "opencv2/core/ocl.hpp" namespace opencv_test { namespace { class DNNTestNetwork : public TestWithParam > { public: dnn::Backend backend; dnn::Target target; DNNTestNetwork() { backend = (dnn::Backend)(int)get<0>(GetParam()); target = (dnn::Target)(int)get<1>(GetParam()); } void processNet(const std::string& weights, const std::string& proto, Size inpSize, const std::string& outputLayer = "", const std::string& halideScheduler = "", double l1 = 0.0, double lInf = 0.0) { // Create a common input blob. int blobSize[] = {1, 3, inpSize.height, inpSize.width}; Mat inp(4, blobSize, CV_32FC1); randu(inp, 0.0f, 1.0f); processNet(weights, proto, inp, outputLayer, halideScheduler, l1, lInf); } void processNet(std::string weights, std::string proto, Mat inp, const std::string& outputLayer = "", std::string halideScheduler = "", double l1 = 0.0, double lInf = 0.0, double detectionConfThresh = 0.2) { if (backend == DNN_BACKEND_OPENCV && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) { #ifdef HAVE_OPENCL if (!cv::ocl::useOpenCL()) #endif { throw SkipTestException("OpenCL is not available/disabled in OpenCV"); } } if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) { if (!checkMyriadTarget()) { throw SkipTestException("Myriad is not available/disabled in OpenCV"); } } if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) { l1 = l1 == 0.0 ? 4e-3 : l1; lInf = lInf == 0.0 ? 2e-2 : lInf; } else { l1 = l1 == 0.0 ? 1e-5 : l1; lInf = lInf == 0.0 ? 1e-4 : lInf; } weights = findDataFile(weights, false); if (!proto.empty()) proto = findDataFile(proto, false); // Create two networks - with default backend and target and a tested one. Net netDefault = readNet(weights, proto); netDefault.setPreferableBackend(DNN_BACKEND_OPENCV); netDefault.setInput(inp); Mat outDefault = netDefault.forward(outputLayer).clone(); Net net = readNet(weights, proto); net.setInput(inp); net.setPreferableBackend(backend); net.setPreferableTarget(target); if (backend == DNN_BACKEND_HALIDE && !halideScheduler.empty()) { halideScheduler = findDataFile(halideScheduler, false); net.setHalideScheduler(halideScheduler); } Mat out = net.forward(outputLayer).clone(); check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "First run"); // Test 2: change input. float* inpData = (float*)inp.data; for (int i = 0; i < inp.size[0] * inp.size[1]; ++i) { Mat slice(inp.size[2], inp.size[3], CV_32F, inpData); cv::flip(slice, slice, 1); inpData += slice.total(); } netDefault.setInput(inp); net.setInput(inp); outDefault = netDefault.forward(outputLayer).clone(); out = net.forward(outputLayer).clone(); check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "Second run"); } void check(Mat& ref, Mat& out, const std::string& outputLayer, double l1, double lInf, double detectionConfThresh, const char* msg) { if (outputLayer == "detection_out") { if (backend == DNN_BACKEND_INFERENCE_ENGINE) { // Inference Engine produces detections terminated by a row which starts from -1. out = out.reshape(1, out.total() / 7); int numDetections = 0; while (numDetections < out.rows && out.at(numDetections, 0) != -1) { numDetections += 1; } out = out.rowRange(0, numDetections); } normAssertDetections(ref, out, msg, detectionConfThresh, l1, lInf); } else normAssert(ref, out, msg, l1, lInf); } }; TEST_P(DNNTestNetwork, AlexNet) { processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", Size(227, 227), "prob", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" : "dnn/halide_scheduler_alexnet.yml"); } TEST_P(DNNTestNetwork, ResNet_50) { processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", Size(224, 224), "prob", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" : "dnn/halide_scheduler_resnet_50.yml"); } TEST_P(DNNTestNetwork, SqueezeNet_v1_1) { processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", Size(227, 227), "prob", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" : "dnn/halide_scheduler_squeezenet_v1_1.yml"); } TEST_P(DNNTestNetwork, GoogLeNet) { processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", Size(224, 224), "prob"); } TEST_P(DNNTestNetwork, Inception_5h) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_inception_5h.yml" : "dnn/halide_scheduler_inception_5h.yml"); } TEST_P(DNNTestNetwork, ENet) { if ((backend == DNN_BACKEND_INFERENCE_ENGINE) || (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)) throw SkipTestException(""); processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" : "dnn/halide_scheduler_enet.yml", 2e-5, 0.15); } TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); Mat sample = imread(findDataFile("dnn/street.png", false)); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); float diffScores = (target == DNN_TARGET_OPENCL_FP16) ? 6e-3 : 0.0; processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", inp, "detection_out", "", diffScores); } TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); Mat sample = imread(findDataFile("dnn/street.png", false)); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.011 : 0.0; float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.06 : 0.0; processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt", inp, "detection_out", "", l1, lInf); } TEST_P(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); Mat sample = imread(findDataFile("dnn/street.png", false)); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.011 : 0.0; float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.06 : 0.0; processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "dnn/ssd_mobilenet_v2_coco_2018_03_29.pbtxt", inp, "detection_out", "", l1, lInf, 0.25); } TEST_P(DNNTestNetwork, SSD_VGG16) { if (backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU) throw SkipTestException(""); double scoreThreshold = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0252 : 0.0; Mat sample = imread(findDataFile("dnn/street.png", false)); Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", inp, "detection_out", "", scoreThreshold); } TEST_P(DNNTestNetwork, OpenPose_pose_coco) { if (backend == DNN_BACKEND_HALIDE || backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException(""); processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt", Size(368, 368)); } TEST_P(DNNTestNetwork, OpenPose_pose_mpi) { if (backend == DNN_BACKEND_HALIDE || backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException(""); processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt", Size(368, 368)); } TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) { if (backend == DNN_BACKEND_HALIDE || backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) throw SkipTestException(""); // The same .caffemodel but modified .prototxt // See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", Size(368, 368)); } TEST_P(DNNTestNetwork, OpenFace) { if (backend == DNN_BACKEND_HALIDE || (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) || (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)) throw SkipTestException(""); processNet("dnn/openface_nn4.small2.v1.t7", "", Size(96, 96), ""); } TEST_P(DNNTestNetwork, opencv_face_detector) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); Size inpSize; if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) inpSize = Size(300, 300); Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false)); Mat inp = blobFromImage(img, 1.0, inpSize, Scalar(104.0, 177.0, 123.0), false, false); processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", inp, "detection_out"); } TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow) { if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); Mat sample = imread(findDataFile("dnn/street.png", false)); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.008 : 0.0; float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.07 : 0.0; processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", inp, "detection_out", "", l1, lInf); } TEST_P(DNNTestNetwork, DenseNet_121) { if ((backend == DNN_BACKEND_HALIDE) || (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) || (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD))) throw SkipTestException(""); processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", Size(224, 224), "", "caffe"); } TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16) { if (backend == DNN_BACKEND_HALIDE || (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) || (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)) throw SkipTestException(""); Mat img = imread(findDataFile("dnn/googlenet_1.png", false)); Mat inp = blobFromImage(img, 1.0, Size(320, 240), Scalar(103.939, 116.779, 123.68), false, false); // Output image has values in range [-143.526, 148.539]. float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.3 : 4e-5; float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7.0 : 2e-3; processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", inp, "", "", l1, lInf); } const tuple testCases[] = { #ifdef HAVE_HALIDE tuple(DNN_BACKEND_HALIDE, DNN_TARGET_CPU), tuple(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL), #endif #ifdef HAVE_INF_ENGINE tuple(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_CPU), tuple(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL), tuple(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_OPENCL_FP16), tuple(DNN_BACKEND_INFERENCE_ENGINE, DNN_TARGET_MYRIAD), #endif tuple(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL), tuple(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL_FP16) }; INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, testing::ValuesIn(testCases)); }} // namespace