/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" // The function calculates center of gravity and the central second order moments static void icvCompleteMomentState( CvMoments* moments ) { double cx = 0, cy = 0; double mu20, mu11, mu02; assert( moments != 0 ); moments->inv_sqrt_m00 = 0; if( fabs(moments->m00) > DBL_EPSILON ) { double inv_m00 = 1. / moments->m00; cx = moments->m10 * inv_m00; cy = moments->m01 * inv_m00; moments->inv_sqrt_m00 = std::sqrt( fabs(inv_m00) ); } // mu20 = m20 - m10*cx mu20 = moments->m20 - moments->m10 * cx; // mu11 = m11 - m10*cy mu11 = moments->m11 - moments->m10 * cy; // mu02 = m02 - m01*cy mu02 = moments->m02 - moments->m01 * cy; moments->mu20 = mu20; moments->mu11 = mu11; moments->mu02 = mu02; // mu30 = m30 - cx*(3*mu20 + cx*m10) moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10); mu11 += mu11; // mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20 moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20; // mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02 moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02; // mu03 = m03 - cy*(3*mu02 + cy*m01) moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01); } static void icvContourMoments( CvSeq* contour, CvMoments* moments ) { int is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2; if( contour->total ) { CvSeqReader reader; double a00, a10, a01, a20, a11, a02, a30, a21, a12, a03; double xi, yi, xi2, yi2, xi_1, yi_1, xi_12, yi_12, dxy, xii_1, yii_1; int lpt = contour->total; a00 = a10 = a01 = a20 = a11 = a02 = a30 = a21 = a12 = a03 = 0; cvStartReadSeq( contour, &reader, 0 ); if( !is_float ) { xi_1 = ((CvPoint*)(reader.ptr))->x; yi_1 = ((CvPoint*)(reader.ptr))->y; } else { xi_1 = ((CvPoint2D32f*)(reader.ptr))->x; yi_1 = ((CvPoint2D32f*)(reader.ptr))->y; } CV_NEXT_SEQ_ELEM( contour->elem_size, reader ); xi_12 = xi_1 * xi_1; yi_12 = yi_1 * yi_1; while( lpt-- > 0 ) { if( !is_float ) { xi = ((CvPoint*)(reader.ptr))->x; yi = ((CvPoint*)(reader.ptr))->y; } else { xi = ((CvPoint2D32f*)(reader.ptr))->x; yi = ((CvPoint2D32f*)(reader.ptr))->y; } CV_NEXT_SEQ_ELEM( contour->elem_size, reader ); xi2 = xi * xi; yi2 = yi * yi; dxy = xi_1 * yi - xi * yi_1; xii_1 = xi_1 + xi; yii_1 = yi_1 + yi; a00 += dxy; a10 += dxy * xii_1; a01 += dxy * yii_1; a20 += dxy * (xi_1 * xii_1 + xi2); a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi)); a02 += dxy * (yi_1 * yii_1 + yi2); a30 += dxy * xii_1 * (xi_12 + xi2); a03 += dxy * yii_1 * (yi_12 + yi2); a21 += dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 + xi2 * (yi_1 + 3 * yi)); a12 += dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 + yi2 * (xi_1 + 3 * xi)); xi_1 = xi; yi_1 = yi; xi_12 = xi2; yi_12 = yi2; } double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60; if( fabs(a00) > FLT_EPSILON ) { if( a00 > 0 ) { db1_2 = 0.5; db1_6 = 0.16666666666666666666666666666667; db1_12 = 0.083333333333333333333333333333333; db1_24 = 0.041666666666666666666666666666667; db1_20 = 0.05; db1_60 = 0.016666666666666666666666666666667; } else { db1_2 = -0.5; db1_6 = -0.16666666666666666666666666666667; db1_12 = -0.083333333333333333333333333333333; db1_24 = -0.041666666666666666666666666666667; db1_20 = -0.05; db1_60 = -0.016666666666666666666666666666667; } // spatial moments moments->m00 = a00 * db1_2; moments->m10 = a10 * db1_6; moments->m01 = a01 * db1_6; moments->m20 = a20 * db1_12; moments->m11 = a11 * db1_24; moments->m02 = a02 * db1_12; moments->m30 = a30 * db1_20; moments->m21 = a21 * db1_60; moments->m12 = a12 * db1_60; moments->m03 = a03 * db1_20; icvCompleteMomentState( moments ); } } } /****************************************************************************************\ * Spatial Raster Moments * \****************************************************************************************/ template static void momentsInTile( const cv::Mat& img, double* moments ) { cv::Size size = img.size(); int x, y; MT mom[10] = {0,0,0,0,0,0,0,0,0,0}; for( y = 0; y < size.height; y++ ) { const T* ptr = img.ptr(y); WT x0 = 0, x1 = 0, x2 = 0; MT x3 = 0; for( x = 0; x < size.width; x++ ) { WT p = ptr[x]; WT xp = x * p, xxp; x0 += p; x1 += xp; xxp = xp * x; x2 += xxp; x3 += xxp * x; } WT py = y * x0, sy = y*y; mom[9] += ((MT)py) * sy; // m03 mom[8] += ((MT)x1) * sy; // m12 mom[7] += ((MT)x2) * y; // m21 mom[6] += x3; // m30 mom[5] += x0 * sy; // m02 mom[4] += x1 * y; // m11 mom[3] += x2; // m20 mom[2] += py; // m01 mom[1] += x1; // m10 mom[0] += x0; // m00 } for( x = 0; x < 10; x++ ) moments[x] = (double)mom[x]; } #if CV_SSE2 template<> void momentsInTile( const cv::Mat& img, double* moments ) { typedef uchar T; typedef int WT; typedef int MT; cv::Size size = img.size(); int x, y; MT mom[10] = {0,0,0,0,0,0,0,0,0,0}; bool useSIMD = cv::checkHardwareSupport(CV_CPU_SSE2); for( y = 0; y < size.height; y++ ) { const T* ptr = img.ptr(y); int x0 = 0, x1 = 0, x2 = 0, x3 = 0, x = 0; if( useSIMD ) { __m128i qx_init = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7); __m128i dx = _mm_set1_epi16(8); __m128i z = _mm_setzero_si128(), qx0 = z, qx1 = z, qx2 = z, qx3 = z, qx = qx_init; for( ; x <= size.width - 8; x += 8 ) { __m128i p = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr + x)), z); qx0 = _mm_add_epi32(qx0, _mm_sad_epu8(p, z)); __m128i px = _mm_mullo_epi16(p, qx); __m128i sx = _mm_mullo_epi16(qx, qx); qx1 = _mm_add_epi32(qx1, _mm_madd_epi16(p, qx)); qx2 = _mm_add_epi32(qx2, _mm_madd_epi16(p, sx)); qx3 = _mm_add_epi32(qx3, _mm_madd_epi16(px, sx)); qx = _mm_add_epi16(qx, dx); } int CV_DECL_ALIGNED(16) buf[4]; _mm_store_si128((__m128i*)buf, qx0); x0 = buf[0] + buf[1] + buf[2] + buf[3]; _mm_store_si128((__m128i*)buf, qx1); x1 = buf[0] + buf[1] + buf[2] + buf[3]; _mm_store_si128((__m128i*)buf, qx2); x2 = buf[0] + buf[1] + buf[2] + buf[3]; _mm_store_si128((__m128i*)buf, qx3); x3 = buf[0] + buf[1] + buf[2] + buf[3]; } for( ; x < size.width; x++ ) { WT p = ptr[x]; WT xp = x * p, xxp; x0 += p; x1 += xp; xxp = xp * x; x2 += xxp; x3 += xxp * x; } WT py = y * x0, sy = y*y; mom[9] += ((MT)py) * sy; // m03 mom[8] += ((MT)x1) * sy; // m12 mom[7] += ((MT)x2) * y; // m21 mom[6] += x3; // m30 mom[5] += x0 * sy; // m02 mom[4] += x1 * y; // m11 mom[3] += x2; // m20 mom[2] += py; // m01 mom[1] += x1; // m10 mom[0] += x0; // m00 } for( x = 0; x < 10; x++ ) moments[x] = (double)mom[x]; } #endif typedef void (*CvMomentsInTileFunc)(const cv::Mat& img, double* moments); CV_IMPL void cvMoments( const void* array, CvMoments* moments, int binary ) { const int TILE_SIZE = 32; int type, depth, cn, coi = 0; CvMat stub, *mat = (CvMat*)array; CvMomentsInTileFunc func = 0; CvContour contourHeader; CvSeq* contour = 0; CvSeqBlock block; double buf[TILE_SIZE*TILE_SIZE]; uchar nzbuf[TILE_SIZE*TILE_SIZE]; if( CV_IS_SEQ( array )) { contour = (CvSeq*)array; if( !CV_IS_SEQ_POINT_SET( contour )) CV_Error( CV_StsBadArg, "The passed sequence is not a valid contour" ); } if( !moments ) CV_Error( CV_StsNullPtr, "" ); memset( moments, 0, sizeof(*moments)); if( !contour ) { mat = cvGetMat( mat, &stub, &coi ); type = CV_MAT_TYPE( mat->type ); if( type == CV_32SC2 || type == CV_32FC2 ) { contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE | CV_SEQ_FLAG_CLOSED, mat, &contourHeader, &block ); } } if( contour ) { icvContourMoments( contour, moments ); return; } type = CV_MAT_TYPE( mat->type ); depth = CV_MAT_DEPTH( type ); cn = CV_MAT_CN( type ); cv::Size size = cvGetMatSize( mat ); if( cn > 1 && coi == 0 ) CV_Error( CV_StsBadArg, "Invalid image type" ); if( size.width <= 0 || size.height <= 0 ) return; if( binary || depth == CV_8U ) func = momentsInTile; else if( depth == CV_16U ) func = momentsInTile; else if( depth == CV_16S ) func = momentsInTile; else if( depth == CV_32F ) func = momentsInTile; else if( depth == CV_64F ) func = momentsInTile; else CV_Error( CV_StsUnsupportedFormat, "" ); cv::Mat src0(mat); for( int y = 0; y < size.height; y += TILE_SIZE ) { cv::Size tileSize; tileSize.height = std::min(TILE_SIZE, size.height - y); for( int x = 0; x < size.width; x += TILE_SIZE ) { tileSize.width = std::min(TILE_SIZE, size.width - x); cv::Mat src(src0, cv::Rect(x, y, tileSize.width, tileSize.height)); if( coi > 0 ) { cv::Mat tmp(tileSize, depth, buf); int pairs[] = {coi-1, 0}; cv::mixChannels(&src, 1, &tmp, 1, pairs, 1); src = tmp; } if( binary ) { cv::Mat tmp(tileSize, CV_8U, nzbuf); cv::compare( src, 0, tmp, CV_CMP_NE ); src = tmp; } double mom[10]; func( src, mom ); if(binary) { double s = 1./255; for( int k = 0; k < 10; k++ ) mom[k] *= s; } double xm = x * mom[0], ym = y * mom[0]; // accumulate moments computed in each tile // + m00 ( = m00' ) moments->m00 += mom[0]; // + m10 ( = m10' + x*m00' ) moments->m10 += mom[1] + xm; // + m01 ( = m01' + y*m00' ) moments->m01 += mom[2] + ym; // + m20 ( = m20' + 2*x*m10' + x*x*m00' ) moments->m20 += mom[3] + x * (mom[1] * 2 + xm); // + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' ) moments->m11 += mom[4] + x * (mom[2] + ym) + y * mom[1]; // + m02 ( = m02' + 2*y*m01' + y*y*m00' ) moments->m02 += mom[5] + y * (mom[2] * 2 + ym); // + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' ) moments->m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm)); // + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20') moments->m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3]; // + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02') moments->m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5]; // + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' ) moments->m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym)); } } icvCompleteMomentState( moments ); } CV_IMPL void cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState ) { if( !mState || !HuState ) CV_Error( CV_StsNullPtr, "" ); double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s; double nu20 = mState->mu20 * s2, nu11 = mState->mu11 * s2, nu02 = mState->mu02 * s2, nu30 = mState->mu30 * s3, nu21 = mState->mu21 * s3, nu12 = mState->mu12 * s3, nu03 = mState->mu03 * s3; double t0 = nu30 + nu12; double t1 = nu21 + nu03; double q0 = t0 * t0, q1 = t1 * t1; double n4 = 4 * nu11; double s = nu20 + nu02; double d = nu20 - nu02; HuState->hu1 = s; HuState->hu2 = d * d + n4 * nu11; HuState->hu4 = q0 + q1; HuState->hu6 = d * (q0 - q1) + n4 * t0 * t1; t0 *= q0 - 3 * q1; t1 *= 3 * q0 - q1; q0 = nu30 - 3 * nu12; q1 = 3 * nu21 - nu03; HuState->hu3 = q0 * q0 + q1 * q1; HuState->hu5 = q0 * t0 + q1 * t1; HuState->hu7 = q1 * t0 - q0 * t1; } CV_IMPL double cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order ) { int order = x_order + y_order; if( !moments ) CV_Error( CV_StsNullPtr, "" ); if( (x_order | y_order) < 0 || order > 3 ) CV_Error( CV_StsOutOfRange, "" ); return (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order]; } CV_IMPL double cvGetCentralMoment( CvMoments * moments, int x_order, int y_order ) { int order = x_order + y_order; if( !moments ) CV_Error( CV_StsNullPtr, "" ); if( (x_order | y_order) < 0 || order > 3 ) CV_Error( CV_StsOutOfRange, "" ); return order >= 2 ? (&(moments->m00))[4 + order * 3 + y_order] : order == 0 ? moments->m00 : 0; } CV_IMPL double cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, int y_order ) { int order = x_order + y_order; double mu = cvGetCentralMoment( moments, x_order, y_order ); double m00s = moments->inv_sqrt_m00; while( --order >= 0 ) mu *= m00s; return mu * m00s * m00s; } namespace cv { Moments::Moments() { m00 = m10 = m01 = m20 = m11 = m02 = m30 = m21 = m12 = m03 = mu20 = mu11 = mu02 = mu30 = mu21 = mu12 = mu03 = nu20 = nu11 = nu02 = nu30 = nu21 = nu12 = nu03 = 0.; } Moments::Moments( double _m00, double _m10, double _m01, double _m20, double _m11, double _m02, double _m30, double _m21, double _m12, double _m03 ) { m00 = _m00; m10 = _m10; m01 = _m01; m20 = _m20; m11 = _m11; m02 = _m02; m30 = _m30; m21 = _m21; m12 = _m12; m03 = _m03; double cx = 0, cy = 0, inv_m00 = 0; if( std::abs(m00) > DBL_EPSILON ) { inv_m00 = 1./m00; cx = m10*inv_m00; cy = m01*inv_m00; } mu20 = m20 - m10*cx; mu11 = m11 - m10*cy; mu02 = m02 - m01*cy; mu30 = m30 - cx*(3*mu20 + cx*m10); mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20; mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02; mu03 = m03 - cy*(3*mu02 + cy*m01); double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00)); double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00; nu20 = mu20*s2; nu11 = mu11*s2; nu02 = mu02*s2; nu30 = mu30*s3; nu21 = mu21*s3; nu12 = mu12*s3; nu03 = mu03*s3; } Moments::Moments( const CvMoments& m ) { *this = Moments(m.m00, m.m10, m.m01, m.m20, m.m11, m.m02, m.m30, m.m21, m.m12, m.m03); } Moments::operator CvMoments() const { CvMoments m; m.m00 = m00; m.m10 = m10; m.m01 = m01; m.m20 = m20; m.m11 = m11; m.m02 = m02; m.m30 = m30; m.m21 = m21; m.m12 = m12; m.m03 = m03; m.mu20 = mu20; m.mu11 = mu11; m.mu02 = mu02; m.mu30 = mu30; m.mu21 = mu21; m.mu12 = mu12; m.mu03 = mu03; double am00 = std::abs(m00); m.inv_sqrt_m00 = am00 > DBL_EPSILON ? 1./std::sqrt(am00) : 0; return m; } } cv::Moments cv::moments( const Mat& array, bool binaryImage ) { CvMoments om; CvMat _array = array; cvMoments(&_array, &om, binaryImage); return om; } void cv::HuMoments( const Moments& m, double hu[7] ) { double t0 = m.nu30 + m.nu12; double t1 = m.nu21 + m.nu03; double q0 = t0 * t0, q1 = t1 * t1; double n4 = 4 * m.nu11; double s = m.nu20 + m.nu02; double d = m.nu20 - m.nu02; hu[0] = s; hu[1] = d * d + n4 * m.nu11; hu[3] = q0 + q1; hu[5] = d * (q0 - q1) + n4 * t0 * t1; t0 *= q0 - 3 * q1; t1 *= 3 * q0 - q1; q0 = m.nu30 - 3 * m.nu12; q1 = 3 * m.nu21 - m.nu03; hu[2] = q0 * q0 + q1 * q1; hu[4] = q0 * t0 + q1 * t1; hu[6] = q1 * t0 - q0 * t1; } /* End of file. */