/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace std; class CV_HoughLinesTest : public cvtest::BaseTest { public: enum {STANDART = 0, PROBABILISTIC}; CV_HoughLinesTest() {} ~CV_HoughLinesTest() {} protected: void run_test(int type); }; class CV_StandartHoughLinesTest : public CV_HoughLinesTest { public: CV_StandartHoughLinesTest() {} ~CV_StandartHoughLinesTest() {} virtual void run(int); }; class CV_ProbabilisticHoughLinesTest : public CV_HoughLinesTest { public: CV_ProbabilisticHoughLinesTest() {} ~CV_ProbabilisticHoughLinesTest() {} virtual void run(int); }; void CV_StandartHoughLinesTest::run(int) { run_test(STANDART); } void CV_ProbabilisticHoughLinesTest::run(int) { run_test(PROBABILISTIC); } void CV_HoughLinesTest::run_test(int type) { Mat src = imread(string(ts->get_data_path()) + "shared/pic1.png"); if (src.empty()) { ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } string xml; if (type == STANDART) xml = string(ts->get_data_path()) + "imgproc/HoughLines.xml"; else if (type == PROBABILISTIC) xml = string(ts->get_data_path()) + "imgproc/HoughLinesP.xml"; else { ts->printf(cvtest::TS::LOG, "Error: unknown HoughLines algorithm type.\n"); ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); return; } Mat dst; Canny(src, dst, 50, 200, 3); Mat lines; if (type == STANDART) HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0); else if (type == PROBABILISTIC) HoughLinesP(dst, lines, 1, CV_PI/180, 100, 0, 0); FileStorage fs(xml, FileStorage::READ); if (!fs.isOpened()) { fs.open(xml, FileStorage::WRITE); if (!fs.isOpened()) { ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } fs << "exp_lines" << lines; fs.release(); fs.open(xml, FileStorage::READ); if (!fs.isOpened()) { ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); return; } } Mat exp_lines; read( fs["exp_lines"], exp_lines, Mat() ); fs.release(); if( exp_lines.size != lines.size ) transpose(lines, lines); if ( exp_lines.size != lines.size || norm(exp_lines, lines, NORM_INF) > 1e-4 ) { ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); return; } ts->set_failed_test_info(cvtest::TS::OK); } TEST(Imgproc_HoughLines, regression) { CV_StandartHoughLinesTest test; test.safe_run(); } TEST(Imgproc_HoughLinesP, regression) { CV_ProbabilisticHoughLinesTest test; test.safe_run(); }