/* dgetf2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b8 = -1.; /* Subroutine */ int dgetf2_(integer *m, integer *n, doublereal *a, integer * lda, integer *ipiv, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; /* Local variables */ integer i__, j, jp; extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sfmin; extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, doublereal *, integer *); extern doublereal dlamch_(char *); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGETF2 computes an LU factorization of a general m-by-n matrix A */ /* using partial pivoting with row interchanges. */ /* The factorization has the form */ /* A = P * L * U */ /* where P is a permutation matrix, L is lower triangular with unit */ /* diagonal elements (lower trapezoidal if m > n), and U is upper */ /* triangular (upper trapezoidal if m < n). */ /* This is the right-looking Level 2 BLAS version of the algorithm. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the m by n matrix to be factored. */ /* On exit, the factors L and U from the factorization */ /* A = P*L*U; the unit diagonal elements of L are not stored. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* IPIV (output) INTEGER array, dimension (min(M,N)) */ /* The pivot indices; for 1 <= i <= min(M,N), row i of the */ /* matrix was interchanged with row IPIV(i). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -k, the k-th argument had an illegal value */ /* > 0: if INFO = k, U(k,k) is exactly zero. The factorization */ /* has been completed, but the factor U is exactly */ /* singular, and division by zero will occur if it is used */ /* to solve a system of equations. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("DGETF2", &i__1); return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { return 0; } /* Compute machine safe minimum */ sfmin = dlamch_("S"); i__1 = min(*m,*n); for (j = 1; j <= i__1; ++j) { /* Find pivot and test for singularity. */ i__2 = *m - j + 1; jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1); ipiv[j] = jp; if (a[jp + j * a_dim1] != 0.) { /* Apply the interchange to columns 1:N. */ if (jp != j) { dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda); } /* Compute elements J+1:M of J-th column. */ if (j < *m) { if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) { i__2 = *m - j; d__1 = 1. / a[j + j * a_dim1]; dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1); } else { i__2 = *m - j; for (i__ = 1; i__ <= i__2; ++i__) { a[j + i__ + j * a_dim1] /= a[j + j * a_dim1]; /* L20: */ } } } } else if (*info == 0) { *info = j; } if (j < min(*m,*n)) { /* Update trailing submatrix. */ i__2 = *m - j; i__3 = *n - j; dger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + ( j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda); } /* L10: */ } return 0; /* End of DGETF2 */ } /* dgetf2_ */