/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #ifdef HAVE_PROTOBUF #include #include #include #include #include #include #include #include "caffe_io.hpp" #endif namespace cv { namespace dnn { CV__DNN_EXPERIMENTAL_NS_BEGIN #ifdef HAVE_PROTOBUF using ::google::protobuf::RepeatedField; using ::google::protobuf::RepeatedPtrField; using ::google::protobuf::Message; using ::google::protobuf::Descriptor; using ::google::protobuf::FieldDescriptor; using ::google::protobuf::Reflection; namespace { template static cv::String toString(const T &v) { std::ostringstream ss; ss << v; return ss.str(); } class CaffeImporter { caffe::NetParameter net; caffe::NetParameter netBinary; public: CaffeImporter(const char *pototxt, const char *caffeModel) { CV_TRACE_FUNCTION(); ReadNetParamsFromTextFileOrDie(pototxt, &net); if (caffeModel && caffeModel[0]) ReadNetParamsFromBinaryFileOrDie(caffeModel, &netBinary); } CaffeImporter(const char *dataProto, size_t lenProto, const char *dataModel, size_t lenModel) { CV_TRACE_FUNCTION(); ReadNetParamsFromTextBufferOrDie(dataProto, lenProto, &net); if (dataModel != NULL && lenModel > 0) ReadNetParamsFromBinaryBufferOrDie(dataModel, lenModel, &netBinary); } void extractCustomParams(const google::protobuf::UnknownFieldSet& unknownFields, cv::dnn::LayerParams ¶ms) { const int numFields = unknownFields.field_count(); for (int i = 0; i < numFields; ++i) { const google::protobuf::UnknownField& field = unknownFields.field(i); CV_Assert(field.type() == google::protobuf::UnknownField::TYPE_GROUP); std::string fieldName = field.group().field(0).length_delimited(); std::string fieldValue = field.group().field(1).length_delimited(); params.set(fieldName, fieldValue); } } void addParam(const Message &msg, const FieldDescriptor *field, cv::dnn::LayerParams ¶ms) { const Reflection *refl = msg.GetReflection(); int type = field->cpp_type(); bool isRepeated = field->is_repeated(); const std::string &name = field->name(); #define SET_UP_FILED(getter, arrayConstr, gtype) \ if (isRepeated) { \ const RepeatedField &v = refl->GetRepeatedField(msg, field); \ params.set(name, DictValue::arrayConstr(v.begin(), (int)v.size())); \ } \ else { \ params.set(name, refl->getter(msg, field)); \ } switch (type) { case FieldDescriptor::CPPTYPE_INT32: SET_UP_FILED(GetInt32, arrayInt, ::google::protobuf::int32); break; case FieldDescriptor::CPPTYPE_UINT32: SET_UP_FILED(GetUInt32, arrayInt, ::google::protobuf::uint32); break; case FieldDescriptor::CPPTYPE_INT64: SET_UP_FILED(GetInt32, arrayInt, ::google::protobuf::int64); break; case FieldDescriptor::CPPTYPE_UINT64: SET_UP_FILED(GetUInt32, arrayInt, ::google::protobuf::uint64); break; case FieldDescriptor::CPPTYPE_BOOL: SET_UP_FILED(GetBool, arrayInt, bool); break; case FieldDescriptor::CPPTYPE_DOUBLE: SET_UP_FILED(GetDouble, arrayReal, double); break; case FieldDescriptor::CPPTYPE_FLOAT: SET_UP_FILED(GetFloat, arrayReal, float); break; case FieldDescriptor::CPPTYPE_STRING: if (isRepeated) { const RepeatedPtrField &v = refl->GetRepeatedPtrField(msg, field); params.set(name, DictValue::arrayString(v.begin(), (int)v.size())); } else { params.set(name, refl->GetString(msg, field)); } break; case FieldDescriptor::CPPTYPE_ENUM: if (isRepeated) { int size = refl->FieldSize(msg, field); std::vector buf(size); for (int i = 0; i < size; i++) buf[i] = refl->GetRepeatedEnum(msg, field, i)->name(); params.set(name, DictValue::arrayString(buf.begin(), size)); } else { params.set(name, refl->GetEnum(msg, field)->name()); } break; default: CV_Error(Error::StsError, "Unknown type \"" + String(field->type_name()) + "\" in prototxt"); break; } } inline static bool ends_with_param(const std::string &str) { static const std::string _param("_param"); return (str.size() >= _param.size()) && str.compare(str.size() - _param.size(), _param.size(), _param) == 0; } void extractLayerParams(const Message &msg, cv::dnn::LayerParams ¶ms, bool isInternal = false) { const Descriptor *msgDesc = msg.GetDescriptor(); const Reflection *msgRefl = msg.GetReflection(); for (int fieldId = 0; fieldId < msgDesc->field_count(); fieldId++) { const FieldDescriptor *fd = msgDesc->field(fieldId); if (!isInternal && !ends_with_param(fd->name())) continue; const google::protobuf::UnknownFieldSet& unknownFields = msgRefl->GetUnknownFields(msg); bool hasData = fd->is_required() || (fd->is_optional() && msgRefl->HasField(msg, fd)) || (fd->is_repeated() && msgRefl->FieldSize(msg, fd) > 0) || !unknownFields.empty(); if (!hasData) continue; extractCustomParams(unknownFields, params); if (fd->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { if (fd->is_repeated()) //Extract only first item! extractLayerParams(msgRefl->GetRepeatedMessage(msg, fd, 0), params, true); else extractLayerParams(msgRefl->GetMessage(msg, fd), params, true); } else { addParam(msg, fd, params); } } } void blobShapeFromProto(const caffe::BlobProto &pbBlob, MatShape& shape) { shape.clear(); if (pbBlob.has_num() || pbBlob.has_channels() || pbBlob.has_height() || pbBlob.has_width()) { shape.push_back(pbBlob.num()); shape.push_back(pbBlob.channels()); shape.push_back(pbBlob.height()); shape.push_back(pbBlob.width()); } else if (pbBlob.has_shape()) { const caffe::BlobShape &_shape = pbBlob.shape(); for (int i = 0; i < _shape.dim_size(); i++) shape.push_back((int)_shape.dim(i)); } else shape.resize(1, 1); // Is a scalar. } void blobFromProto(const caffe::BlobProto &pbBlob, cv::Mat &dstBlob) { MatShape shape; blobShapeFromProto(pbBlob, shape); dstBlob.create((int)shape.size(), &shape[0], CV_32F); if (pbBlob.data_size()) { // Single precision floats. CV_Assert(pbBlob.data_size() == (int)dstBlob.total()); CV_DbgAssert(pbBlob.GetDescriptor()->FindFieldByLowercaseName("data")->cpp_type() == FieldDescriptor::CPPTYPE_FLOAT); Mat(dstBlob.dims, &dstBlob.size[0], CV_32F, (void*)pbBlob.data().data()).copyTo(dstBlob); } else { CV_Assert(pbBlob.has_raw_data()); const std::string& raw_data = pbBlob.raw_data(); if (pbBlob.raw_data_type() == caffe::FLOAT16) { // Half precision floats. CV_Assert(raw_data.size() / 2 == (int)dstBlob.total()); Mat halfs((int)shape.size(), &shape[0], CV_16SC1, (void*)raw_data.c_str()); convertFp16(halfs, dstBlob); } else if (pbBlob.raw_data_type() == caffe::FLOAT) { CV_Assert(raw_data.size() / 4 == (int)dstBlob.total()); Mat((int)shape.size(), &shape[0], CV_32FC1, (void*)raw_data.c_str()).copyTo(dstBlob); } else CV_Error(Error::StsNotImplemented, "Unexpected blob data type"); } } void extractBinaryLayerParams(const caffe::LayerParameter& layer, LayerParams& layerParams) { const std::string &name = layer.name(); int li; for (li = 0; li != netBinary.layer_size(); li++) { const caffe::LayerParameter& binLayer = netBinary.layer(li); // Break if the layer name is the same and the blobs are not cleared if (binLayer.name() == name && binLayer.blobs_size() != 0) break; } if (li == netBinary.layer_size()) return; caffe::LayerParameter* binLayer = netBinary.mutable_layer(li); const int numBlobs = binLayer->blobs_size(); layerParams.blobs.resize(numBlobs); for (int bi = 0; bi < numBlobs; bi++) { blobFromProto(binLayer->blobs(bi), layerParams.blobs[bi]); } binLayer->clear_blobs(); CV_Assert(numBlobs == binLayer->blobs().ClearedCount()); for (int bi = 0; bi < numBlobs; bi++) { delete binLayer->mutable_blobs()->ReleaseCleared(); } } struct BlobNote { BlobNote(const std::string &_name, int _layerId, int _outNum) : name(_name), layerId(_layerId), outNum(_outNum) {} std::string name; int layerId, outNum; }; std::vector addedBlobs; std::map layerCounter; void populateNet(Net dstNet) { CV_TRACE_FUNCTION(); int layersSize = net.layer_size(); layerCounter.clear(); addedBlobs.clear(); addedBlobs.reserve(layersSize + 1); //setup input layer names std::vector netInputs(net.input_size()); { for (int inNum = 0; inNum < net.input_size(); inNum++) { addedBlobs.push_back(BlobNote(net.input(inNum), 0, inNum)); netInputs[inNum] = net.input(inNum); } } for (int li = 0; li < layersSize; li++) { const caffe::LayerParameter &layer = net.layer(li); String name = layer.name(); String type = layer.type(); LayerParams layerParams; extractLayerParams(layer, layerParams); extractBinaryLayerParams(layer, layerParams); int repetitions = layerCounter[name]++; if (repetitions) name += String("_") + toString(repetitions); if (type == "Input") { for (int outNum = 0; outNum < layer.top_size(); outNum++) { addOutput(layer, 0, outNum); addedBlobs.back().outNum = netInputs.size(); netInputs.push_back(addedBlobs.back().name); } continue; } else if (type == "BatchNorm") { if (!layerParams.get("use_global_stats", true)) { CV_Assert_N(layer.bottom_size() == 1, layer.top_size() == 1); LayerParams mvnParams; mvnParams.set("eps", layerParams.get("eps", 1e-5)); std::string mvnName = name + "/mvn"; int repetitions = layerCounter[mvnName]++; if (repetitions) mvnName += String("_") + toString(repetitions); int mvnId = dstNet.addLayer(mvnName, "MVN", mvnParams); addInput(layer.bottom(0), mvnId, 0, dstNet); addOutput(layer, mvnId, 0); net.mutable_layer(li)->set_bottom(0, layer.top(0)); layerParams.blobs[0].setTo(0); // mean layerParams.blobs[1].setTo(1); // std } } else if (type == "Axpy") { CV_Assert_N(layer.bottom_size() == 3, layer.top_size() == 1); std::string scaleName = name + "/scale"; int repetitions = layerCounter[scaleName]++; if (repetitions) { scaleName += String("_") + toString(repetitions); } LayerParams scaleParams; scaleParams.set("axis", 1); scaleParams.set("has_bias", false); int scaleId = dstNet.addLayer(scaleName, "Scale", scaleParams); addInput(layer.bottom(2), scaleId, 0, dstNet); addInput(layer.bottom(0), scaleId, 1, dstNet); addOutput(layer, scaleId, 0); net.mutable_layer(li)->set_bottom(0, layer.top(0)); net.mutable_layer(li)->mutable_bottom()->RemoveLast(); type = "Eltwise"; } else if ("ConvolutionDepthwise" == type) { type = "Convolution"; } int id = dstNet.addLayer(name, type, layerParams); for (int inNum = 0; inNum < layer.bottom_size(); inNum++) addInput(layer.bottom(inNum), id, inNum, dstNet); for (int outNum = 0; outNum < layer.top_size(); outNum++) addOutput(layer, id, outNum); } dstNet.setInputsNames(netInputs); addedBlobs.clear(); } void addOutput(const caffe::LayerParameter &layer, int layerId, int outNum) { const std::string &name = layer.top(outNum); bool haveDups = false; for (int idx = (int)addedBlobs.size() - 1; idx >= 0; idx--) { if (addedBlobs[idx].name == name) { haveDups = true; break; } } if (haveDups) { bool isInplace = layer.bottom_size() > outNum && layer.bottom(outNum) == name; if (!isInplace) CV_Error(Error::StsBadArg, "Duplicate blobs produced by multiple sources"); } addedBlobs.push_back(BlobNote(name, layerId, outNum)); } void addInput(const std::string &name, int layerId, int inNum, Net &dstNet) { int idx; for (idx = (int)addedBlobs.size() - 1; idx >= 0; idx--) { if (addedBlobs[idx].name == name) break; } if (idx < 0) { CV_Error(Error::StsObjectNotFound, "Can't find output blob \"" + name + "\""); return; } dstNet.connect(addedBlobs[idx].layerId, addedBlobs[idx].outNum, layerId, inNum); } }; } Net readNetFromCaffe(const String &prototxt, const String &caffeModel /*= String()*/) { CaffeImporter caffeImporter(prototxt.c_str(), caffeModel.c_str()); Net net; caffeImporter.populateNet(net); return net; } Net readNetFromCaffe(const char *bufferProto, size_t lenProto, const char *bufferModel, size_t lenModel) { CaffeImporter caffeImporter(bufferProto, lenProto, bufferModel, lenModel); Net net; caffeImporter.populateNet(net); return net; } Net readNetFromCaffe(const std::vector& bufferProto, const std::vector& bufferModel) { const char* bufferProtoPtr = reinterpret_cast(&bufferProto[0]); const char* bufferModelPtr = bufferModel.empty() ? NULL : reinterpret_cast(&bufferModel[0]); return readNetFromCaffe(bufferProtoPtr, bufferProto.size(), bufferModelPtr, bufferModel.size()); } #endif //HAVE_PROTOBUF CV__DNN_EXPERIMENTAL_NS_END }} // namespace