#!/usr/bin/env python from __future__ import print_function import numpy as np import cv2 from tests_common import NewOpenCVTests class UMat(NewOpenCVTests): def test_umat_construct(self): data = np.random.random([512, 512]) # UMat constructors data_um = cv2.UMat(data) # from ndarray data_sub_um = cv2.UMat(data_um, [128, 256], [128, 256]) # from UMat data_dst_um = cv2.UMat(128, 128, cv2.CV_64F) # from size/type # test continuous and submatrix flags assert data_um.isContinuous() and not data_um.isSubmatrix() assert not data_sub_um.isContinuous() and data_sub_um.isSubmatrix() # test operation on submatrix cv2.multiply(data_sub_um, 2., dst=data_dst_um) assert np.allclose(2. * data[128:256, 128:256], data_dst_um.get()) def test_umat_handle(self): a_um = cv2.UMat(256, 256, cv2.CV_32F) _ctx_handle = cv2.UMat.context() # obtain context handle _queue_handle = cv2.UMat.queue() # obtain queue handle _a_handle = a_um.handle(cv2.ACCESS_READ) # obtain buffer handle _offset = a_um.offset # obtain buffer offset def test_umat_matching(self): img1 = self.get_sample("samples/data/right01.jpg") img2 = self.get_sample("samples/data/right02.jpg") orb = cv2.ORB_create() img1, img2 = cv2.UMat(img1), cv2.UMat(img2) ps1, descs_umat1 = orb.detectAndCompute(img1, None) ps2, descs_umat2 = orb.detectAndCompute(img2, None) self.assertIsInstance(descs_umat1, cv2.UMat) self.assertIsInstance(descs_umat2, cv2.UMat) self.assertGreater(len(ps1), 0) self.assertGreater(len(ps2), 0) bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) res_umats = bf.match(descs_umat1, descs_umat2) res = bf.match(descs_umat1.get(), descs_umat2.get()) self.assertGreater(len(res), 0) self.assertEqual(len(res_umats), len(res)) def test_umat_optical_flow(self): img1 = self.get_sample("samples/data/right01.jpg", cv2.IMREAD_GRAYSCALE) img2 = self.get_sample("samples/data/right02.jpg", cv2.IMREAD_GRAYSCALE) # Note, that if you want to see performance boost by OCL implementation - you need enough data # For example you can increase maxCorners param to 10000 and increase img1 and img2 in such way: # img = np.hstack([np.vstack([img] * 6)] * 6) feature_params = dict(maxCorners=239, qualityLevel=0.3, minDistance=7, blockSize=7) p0 = cv2.goodFeaturesToTrack(img1, mask=None, **feature_params) p0_umat = cv2.goodFeaturesToTrack(cv2.UMat(img1), mask=None, **feature_params) self.assertEqual(p0_umat.get().shape, p0.shape) p0 = np.array(sorted(p0, key=lambda p: tuple(p[0]))) p0_umat = cv2.UMat(np.array(sorted(p0_umat.get(), key=lambda p: tuple(p[0])))) self.assertTrue(np.allclose(p0_umat.get(), p0)) _p1_mask_err = cv2.calcOpticalFlowPyrLK(img1, img2, p0, None) _p1_mask_err_umat0 = map(cv2.UMat.get, cv2.calcOpticalFlowPyrLK(img1, img2, p0_umat, None)) _p1_mask_err_umat1 = map(cv2.UMat.get, cv2.calcOpticalFlowPyrLK(cv2.UMat(img1), img2, p0_umat, None)) _p1_mask_err_umat2 = map(cv2.UMat.get, cv2.calcOpticalFlowPyrLK(img1, cv2.UMat(img2), p0_umat, None)) # # results of OCL optical flow differs from CPU implementation, so result can not be easily compared # for p1_mask_err_umat in [p1_mask_err_umat0, p1_mask_err_umat1, p1_mask_err_umat2]: # for data, data_umat in zip(p1_mask_err, p1_mask_err_umat): # self.assertTrue(np.allclose(data, data_umat)) if __name__ == '__main__': NewOpenCVTests.bootstrap()