#!/usr/bin/env python ''' Lucas-Kanade tracker ==================== Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack for track initialization and back-tracking for match verification between frames. ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 #local modules from tst_scene_render import TestSceneRender from tests_common import NewOpenCVTests, intersectionRate, isPointInRect lk_params = dict( winSize = (15, 15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) feature_params = dict( maxCorners = 500, qualityLevel = 0.3, minDistance = 7, blockSize = 7 ) def getRectFromPoints(points): distances = [] for point in points: distances.append(cv2.norm(point, cv2.NORM_L2)) x0, y0 = points[np.argmin(distances)] x1, y1 = points[np.argmax(distances)] return np.array([x0, y0, x1, y1]) class lk_track_test(NewOpenCVTests): track_len = 10 detect_interval = 5 tracks = [] frame_idx = 0 render = None def test_lk_track(self): self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png')) self.runTracker() def runTracker(self): foregroundPointsNum = 0 while True: frame = self.render.getNextFrame() frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if len(self.tracks) > 0: img0, img1 = self.prev_gray, frame_gray p0 = np.float32([tr[-1][0] for tr in self.tracks]).reshape(-1, 1, 2) p1, _st, _err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params) p0r, _st, _err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params) d = abs(p0-p0r).reshape(-1, 2).max(-1) good = d < 1 new_tracks = [] for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good): if not good_flag: continue tr.append([(x, y), self.frame_idx]) if len(tr) > self.track_len: del tr[0] new_tracks.append(tr) self.tracks = new_tracks if self.frame_idx % self.detect_interval == 0: goodTracksCount = 0 for tr in self.tracks: oldRect = self.render.getRectInTime(self.render.timeStep * tr[0][1]) newRect = self.render.getRectInTime(self.render.timeStep * tr[-1][1]) if isPointInRect(tr[0][0], oldRect) and isPointInRect(tr[-1][0], newRect): goodTracksCount += 1 if self.frame_idx == self.detect_interval: foregroundPointsNum = goodTracksCount fgIndex = float(foregroundPointsNum) / (foregroundPointsNum + 1) fgRate = float(goodTracksCount) / (len(self.tracks) + 1) if self.frame_idx > 0: self.assertGreater(fgIndex, 0.9) self.assertGreater(fgRate, 0.2) mask = np.zeros_like(frame_gray) mask[:] = 255 for x, y in [np.int32(tr[-1][0]) for tr in self.tracks]: cv2.circle(mask, (x, y), 5, 0, -1) p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params) if p is not None: for x, y in np.float32(p).reshape(-1, 2): self.tracks.append([[(x, y), self.frame_idx]]) self.frame_idx += 1 self.prev_gray = frame_gray if self.frame_idx > 300: break if __name__ == '__main__': NewOpenCVTests.bootstrap()