/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_CUDA using namespace cvtest; //////////////////////////////////////////////////////////////////////////////// // Merge PARAM_TEST_CASE(Merge, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int channels; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(Merge, Accuracy) { std::vector src; src.reserve(channels); for (int i = 0; i < channels; ++i) src.push_back(cv::Mat(size, depth, cv::Scalar::all(i))); std::vector d_src; for (int i = 0; i < channels; ++i) d_src.push_back(loadMat(src[i], useRoi)); if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) { try { cv::gpu::GpuMat dst; cv::gpu::merge(d_src, dst); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { cv::gpu::GpuMat dst; cv::gpu::merge(d_src, dst); cv::Mat dst_gold; cv::merge(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } } INSTANTIATE_TEST_CASE_P(GPU_Arithm, Merge, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, testing::Values(1, 2, 3, 4), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Split PARAM_TEST_CASE(Split, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; int channels; bool useRoi; int type; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); channels = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); type = CV_MAKE_TYPE(depth, channels); } }; GPU_TEST_P(Split, Accuracy) { cv::Mat src = randomMat(size, type); if (depth == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) { try { std::vector dst; cv::gpu::split(loadMat(src), dst); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { std::vector dst; cv::gpu::split(loadMat(src, useRoi), dst); std::vector dst_gold; cv::split(src, dst_gold); ASSERT_EQ(dst_gold.size(), dst.size()); for (size_t i = 0; i < dst_gold.size(); ++i) { EXPECT_MAT_NEAR(dst_gold[i], dst[i], 0.0); } } } INSTANTIATE_TEST_CASE_P(GPU_Arithm, Split, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, ALL_DEPTH, testing::Values(1, 2, 3, 4), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Transpose PARAM_TEST_CASE(Transpose, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(Transpose, Accuracy) { cv::Mat src = randomMat(size, type); if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) { try { cv::gpu::GpuMat dst; cv::gpu::transpose(loadMat(src), dst); } catch (const cv::Exception& e) { ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code); } } else { cv::gpu::GpuMat dst = createMat(cv::Size(size.height, size.width), type, useRoi); cv::gpu::transpose(loadMat(src, useRoi), dst); cv::Mat dst_gold; cv::transpose(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } } INSTANTIATE_TEST_CASE_P(GPU_Arithm, Transpose, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_16UC2), MatType(CV_16SC2), MatType(CV_32SC1), MatType(CV_32SC2), MatType(CV_64FC1)), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // Flip enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1}; CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y) #define ALL_FLIP_CODES testing::Values(FlipCode(FLIP_BOTH), FlipCode(FLIP_X), FlipCode(FLIP_Y)) PARAM_TEST_CASE(Flip, cv::gpu::DeviceInfo, cv::Size, MatType, FlipCode, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; int flip_code; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); flip_code = GET_PARAM(3); useRoi = GET_PARAM(4); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(Flip, Accuracy) { cv::Mat src = randomMat(size, type); cv::gpu::GpuMat dst = createMat(size, type, useRoi); cv::gpu::flip(loadMat(src, useRoi), dst, flip_code); cv::Mat dst_gold; cv::flip(src, dst_gold, flip_code); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Arithm, Flip, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32SC1), MatType(CV_32SC3), MatType(CV_32SC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), ALL_FLIP_CODES, WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// // LUT PARAM_TEST_CASE(LUT, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(LUT, OneChannel) { cv::Mat src = randomMat(size, type); cv::Mat lut = randomMat(cv::Size(256, 1), CV_8UC1); cv::gpu::GpuMat dst = createMat(size, CV_MAKE_TYPE(lut.depth(), src.channels())); cv::gpu::LUT(loadMat(src, useRoi), lut, dst); cv::Mat dst_gold; cv::LUT(src, lut, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } GPU_TEST_P(LUT, MultiChannel) { cv::Mat src = randomMat(size, type); cv::Mat lut = randomMat(cv::Size(256, 1), CV_MAKE_TYPE(CV_8U, src.channels())); cv::gpu::GpuMat dst = createMat(size, CV_MAKE_TYPE(lut.depth(), src.channels()), useRoi); cv::gpu::LUT(loadMat(src, useRoi), lut, dst); cv::Mat dst_gold; cv::LUT(src, lut, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Arithm, LUT, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_8UC3)), WHOLE_SUBMAT)); ////////////////////////////////////////////////////////////////////////////// // CopyMakeBorder namespace { IMPLEMENT_PARAM_CLASS(Border, int) } PARAM_TEST_CASE(CopyMakeBorder, cv::gpu::DeviceInfo, cv::Size, MatType, Border, BorderType, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int type; int border; int borderType; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); type = GET_PARAM(2); border = GET_PARAM(3); borderType = GET_PARAM(4); useRoi = GET_PARAM(5); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(CopyMakeBorder, Accuracy) { cv::Mat src = randomMat(size, type); cv::Scalar val = randomScalar(0, 255); cv::gpu::GpuMat dst = createMat(cv::Size(size.width + 2 * border, size.height + 2 * border), type, useRoi); cv::gpu::copyMakeBorder(loadMat(src, useRoi), dst, border, border, border, border, borderType, val); cv::Mat dst_gold; cv::copyMakeBorder(src, dst_gold, border, border, border, border, borderType, val); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Arithm, CopyMakeBorder, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)), testing::Values(Border(1), Border(10), Border(50)), ALL_BORDER_TYPES, WHOLE_SUBMAT)); #endif // HAVE_CUDA