/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_CUDA using namespace cvtest; //#define DUMP struct HOG : testing::TestWithParam { cv::cuda::DeviceInfo devInfo; cv::Ptr hog; #ifdef DUMP std::ofstream f; #else std::ifstream f; #endif int wins_per_img_x; int wins_per_img_y; int blocks_per_win_x; int blocks_per_win_y; int block_hist_size; virtual void SetUp() { devInfo = GetParam(); cv::cuda::setDevice(devInfo.deviceID()); hog = cv::cuda::HOG::create(); } #ifdef DUMP void dump(const std::vector& locations) { int nlocations = locations.size(); f.write((char*)&nlocations, sizeof(nlocations)); for (int i = 0; i < locations.size(); ++i) f.write((char*)&locations[i], sizeof(locations[i])); } #else void compare(const std::vector& locations) { // skip block_hists check int rows, cols; f.read((char*)&rows, sizeof(rows)); f.read((char*)&cols, sizeof(cols)); for (int i = 0; i < rows; ++i) { for (int j = 0; j < cols; ++j) { float val; f.read((char*)&val, sizeof(val)); } } int nlocations; f.read((char*)&nlocations, sizeof(nlocations)); ASSERT_EQ(nlocations, static_cast(locations.size())); for (int i = 0; i < nlocations; ++i) { cv::Point location; f.read((char*)&location, sizeof(location)); ASSERT_EQ(location, locations[i]); } } #endif void testDetect(const cv::Mat& img) { hog->setGammaCorrection(false); hog->setSVMDetector(hog->getDefaultPeopleDetector()); std::vector locations; // Test detect hog->detect(loadMat(img), locations); #ifdef DUMP dump(locations); #else compare(locations); #endif // Test detect on smaller image cv::Mat img2; cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2)); hog->detect(loadMat(img2), locations); #ifdef DUMP dump(locations); #else compare(locations); #endif // Test detect on greater image cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2)); hog->detect(loadMat(img2), locations); #ifdef DUMP dump(locations); #else compare(locations); #endif } }; // desabled while resize does not fixed CUDA_TEST_P(HOG, DISABLED_Detect) { cv::Mat img_rgb = readImage("hog/road.png"); ASSERT_FALSE(img_rgb.empty()); f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary); ASSERT_TRUE(f.is_open()); // Test on color image cv::Mat img; cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA); testDetect(img); // Test on gray image cv::cvtColor(img_rgb, img, cv::COLOR_BGR2GRAY); testDetect(img); } CUDA_TEST_P(HOG, GetDescriptors) { // Load image (e.g. train data, composed from windows) cv::Mat img_rgb = readImage("hog/train_data.png"); ASSERT_FALSE(img_rgb.empty()); // Convert to C4 cv::Mat img; cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA); cv::cuda::GpuMat d_img(img); // Convert train images into feature vectors (train table) cv::cuda::GpuMat descriptors, descriptors_by_cols; hog->setWinStride(Size(64, 128)); hog->setDescriptorFormat(cv::cuda::HOG::DESCR_FORMAT_ROW_BY_ROW); hog->compute(d_img, descriptors); hog->setDescriptorFormat(cv::cuda::HOG::DESCR_FORMAT_COL_BY_COL); hog->compute(d_img, descriptors_by_cols); // Check size of the result train table wins_per_img_x = 3; wins_per_img_y = 2; blocks_per_win_x = 7; blocks_per_win_y = 15; block_hist_size = 36; cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size, wins_per_img_x * wins_per_img_y); ASSERT_EQ(descr_size_expected, descriptors.size()); // Check both formats of output descriptors are handled correctly cv::Mat dr(descriptors); cv::Mat dc(descriptors_by_cols); for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i) { const float* l = dr.rowRange(i, i + 1).ptr(); const float* r = dc.rowRange(i, i + 1).ptr(); for (int y = 0; y < blocks_per_win_y; ++y) for (int x = 0; x < blocks_per_win_x; ++x) for (int k = 0; k < block_hist_size; ++k) ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k], r[(x * blocks_per_win_y + y) * block_hist_size + k]); } } INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, HOG, ALL_DEVICES); //============== caltech hog tests =====================// struct CalTech : public ::testing::TestWithParam > { cv::cuda::DeviceInfo devInfo; cv::Mat img; virtual void SetUp() { devInfo = GET_PARAM(0); cv::cuda::setDevice(devInfo.deviceID()); img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE); ASSERT_FALSE(img.empty()); } }; CUDA_TEST_P(CalTech, HOG) { cv::cuda::GpuMat d_img(img); cv::Mat markedImage(img.clone()); cv::Ptr d_hog = cv::cuda::HOG::create(); d_hog->setSVMDetector(d_hog->getDefaultPeopleDetector()); d_hog->setNumLevels(d_hog->getNumLevels() + 32); std::vector found_locations; d_hog->detectMultiScale(d_img, found_locations); #if defined (LOG_CASCADE_STATISTIC) for (int i = 0; i < (int)found_locations.size(); i++) { cv::Rect r = found_locations[i]; std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl; cv::rectangle(markedImage, r , CV_RGB(255, 0, 0)); } cv::imshow("Res", markedImage); cv::waitKey(); #endif } INSTANTIATE_TEST_CASE_P(detect, CalTech, testing::Combine(ALL_DEVICES, ::testing::Values("caltech/image_00000009_0.png", "caltech/image_00000032_0.png", "caltech/image_00000165_0.png", "caltech/image_00000261_0.png", "caltech/image_00000469_0.png", "caltech/image_00000527_0.png", "caltech/image_00000574_0.png"))); ////////////////////////////////////////////////////////////////////////////////////////// /// LBP classifier PARAM_TEST_CASE(LBP_Read_classifier, cv::cuda::DeviceInfo, int) { cv::cuda::DeviceInfo devInfo; virtual void SetUp() { devInfo = GET_PARAM(0); cv::cuda::setDevice(devInfo.deviceID()); } }; CUDA_TEST_P(LBP_Read_classifier, Accuracy) { std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml"; cv::Ptr d_cascade; ASSERT_NO_THROW( d_cascade = cv::cuda::CascadeClassifier::create(classifierXmlPath); ); ASSERT_FALSE(d_cascade.empty()); } INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, LBP_Read_classifier, testing::Combine(ALL_DEVICES, testing::Values(0))); PARAM_TEST_CASE(LBP_classify, cv::cuda::DeviceInfo, int) { cv::cuda::DeviceInfo devInfo; virtual void SetUp() { devInfo = GET_PARAM(0); cv::cuda::setDevice(devInfo.deviceID()); } }; CUDA_TEST_P(LBP_classify, Accuracy) { std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml"; std::string imagePath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/er.png"; cv::CascadeClassifier cpuClassifier(classifierXmlPath); ASSERT_FALSE(cpuClassifier.empty()); cv::Mat image = cv::imread(imagePath); image = image.colRange(0, image.cols/2); cv::Mat grey; cvtColor(image, grey, cv::COLOR_BGR2GRAY); ASSERT_FALSE(image.empty()); std::vector rects; cpuClassifier.detectMultiScale(grey, rects); cv::Mat markedImage = image.clone(); std::vector::iterator it = rects.begin(); for (; it != rects.end(); ++it) cv::rectangle(markedImage, *it, cv::Scalar(255, 0, 0)); cv::Ptr gpuClassifier = cv::cuda::CascadeClassifier::create(classifierXmlPath); cv::cuda::GpuMat tested(grey); cv::cuda::GpuMat gpu_rects_buf; gpuClassifier->detectMultiScale(tested, gpu_rects_buf); std::vector gpu_rects; gpuClassifier->convert(gpu_rects_buf, gpu_rects); #if defined (LOG_CASCADE_STATISTIC) for (size_t i = 0; i < gpu_rects.size(); i++) { cv::Rect r = gpu_rects[i]; std::cout << r.x << " " << r.y << " " << r.width << " " << r.height << std::endl; cv::rectangle(markedImage, r , CV_RGB(255, 0, 0)); } cv::imshow("Res", markedImage); cv::waitKey(); #endif } INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, LBP_classify, testing::Combine(ALL_DEVICES, testing::Values(0))); #endif // HAVE_CUDA