/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "npy_blob.hpp" #include namespace cvtest { using namespace cv; using namespace cv::dnn; template static std::string _tf(TString filename) { return (getOpenCVExtraDir() + "/dnn/") + filename; } TEST(Test_Caffe, read_gtsrb) { Net net = readNetFromCaffe(_tf("gtsrb.prototxt")); ASSERT_FALSE(net.empty()); } TEST(Test_Caffe, read_googlenet) { Net net = readNetFromCaffe(_tf("bvlc_googlenet.prototxt")); ASSERT_FALSE(net.empty()); } TEST(Reproducibility_AlexNet, Accuracy) { Net net; { const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false); const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false); net = readNetFromCaffe(proto, model); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data"); Mat out = net.forward("prob"); Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy")); normAssert(ref, out); } #if !defined(_WIN32) || defined(_WIN64) TEST(Reproducibility_FCN, Accuracy) { Net net; { const string proto = findDataFile("dnn/fcn8s-heavy-pascal.prototxt", false); const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel", false); net = readNetFromCaffe(proto, model); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("street.png")); ASSERT_TRUE(!sample.empty()); std::vector layerIds; std::vector weights, blobs; net.getMemoryConsumption(shape(1,3,227,227), layerIds, weights, blobs); net.setInput(blobFromImage(sample, 1.0f, Size(500, 500), Scalar(), false), "data"); Mat out = net.forward("score"); Mat refData = imread(_tf("caffe_fcn8s_prob.png"), IMREAD_ANYDEPTH); int shape[] = {1, 21, 500, 500}; Mat ref(4, shape, CV_32FC1, refData.data); normAssert(ref, out); } #endif TEST(Reproducibility_SSD, Accuracy) { Net net; { const string proto = findDataFile("dnn/ssd_vgg16.prototxt", false); const string model = findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false); net = readNetFromCaffe(proto, model); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("street.png")); ASSERT_TRUE(!sample.empty()); if (sample.channels() == 4) cvtColor(sample, sample, COLOR_BGRA2BGR); Mat in_blob = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); net.setInput(in_blob, "data"); Mat out = net.forward("detection_out"); Mat ref = blobFromNPY(_tf("ssd_out.npy")); normAssert(ref, out); } TEST(Reproducibility_ResNet50, Accuracy) { Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt", false), findDataFile("dnn/ResNet-50-model.caffemodel", false)); Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false); ASSERT_TRUE(!input.empty()); net.setInput(input); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("resnet50_prob.npy")); normAssert(ref, out); } TEST(Reproducibility_SqueezeNet_v1_1, Accuracy) { Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt", false), findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false); ASSERT_TRUE(!input.empty()); net.setInput(input); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy")); normAssert(ref, out); } TEST(Reproducibility_AlexNet_fp16, Accuracy) { const float l1 = 1e-5; const float lInf = 3e-3; const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false); const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false); shrinkCaffeModel(model, "bvlc_alexnet.caffemodel_fp16"); Net net = readNetFromCaffe(proto, "bvlc_alexnet.caffemodel_fp16"); Mat sample = imread(findDataFile("dnn/grace_hopper_227.png", false)); net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false)); Mat out = net.forward(); Mat ref = blobFromNPY(findDataFile("dnn/caffe_alexnet_prob.npy", false)); normAssert(ref, out, "", l1, lInf); } TEST(Reproducibility_GoogLeNet_fp16, Accuracy) { const float l1 = 1e-5; const float lInf = 3e-3; const string proto = findDataFile("dnn/bvlc_googlenet.prototxt", false); const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false); shrinkCaffeModel(model, "bvlc_googlenet.caffemodel_fp16"); Net net = readNetFromCaffe(proto, "bvlc_googlenet.caffemodel_fp16"); std::vector inpMats; inpMats.push_back( imread(_tf("googlenet_0.png")) ); inpMats.push_back( imread(_tf("googlenet_1.png")) ); ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty()); net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data"); Mat out = net.forward("prob"); Mat ref = blobFromNPY(_tf("googlenet_prob.npy")); normAssert(out, ref, "", l1, lInf); } }