/* // The example of interoperability between OpenCL and OpenCV. // This will loop through frames of video either from input media file // or camera device and do processing of these data in OpenCL and then // in OpenCV. In OpenCL it does inversion of pixels in left half of frame and // in OpenCV it does bluring in the right half of frame. */ #include #include #include #include #include #include #include #include #if __APPLE__ #include #else #include #endif #include #include #include #include #include using namespace std; using namespace cv; namespace opencl { class PlatformInfo { public: PlatformInfo() {} ~PlatformInfo() {} cl_int QueryInfo(cl_platform_id id) { query_param(id, CL_PLATFORM_PROFILE, m_profile); query_param(id, CL_PLATFORM_VERSION, m_version); query_param(id, CL_PLATFORM_NAME, m_name); query_param(id, CL_PLATFORM_VENDOR, m_vendor); query_param(id, CL_PLATFORM_EXTENSIONS, m_extensions); return CL_SUCCESS; } std::string Profile() { return m_profile; } std::string Version() { return m_version; } std::string Name() { return m_name; } std::string Vendor() { return m_vendor; } std::string Extensions() { return m_extensions; } private: cl_int query_param(cl_platform_id id, cl_platform_info param, std::string& paramStr) { cl_int res; size_t psize; cv::AutoBuffer buf; res = clGetPlatformInfo(id, param, 0, 0, &psize); if (CL_SUCCESS != res) throw std::runtime_error(std::string("clGetPlatformInfo failed")); buf.resize(psize); res = clGetPlatformInfo(id, param, psize, buf, 0); if (CL_SUCCESS != res) throw std::runtime_error(std::string("clGetPlatformInfo failed")); // just in case, ensure trailing zero for ASCIIZ string buf[psize] = 0; paramStr = buf; return CL_SUCCESS; } private: std::string m_profile; std::string m_version; std::string m_name; std::string m_vendor; std::string m_extensions; }; class DeviceInfo { public: DeviceInfo() {} ~DeviceInfo() {} cl_int QueryInfo(cl_device_id id) { query_param(id, CL_DEVICE_TYPE, m_type); query_param(id, CL_DEVICE_VENDOR_ID, m_vendor_id); query_param(id, CL_DEVICE_MAX_COMPUTE_UNITS, m_max_compute_units); query_param(id, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, m_max_work_item_dimensions); query_param(id, CL_DEVICE_MAX_WORK_ITEM_SIZES, m_max_work_item_sizes); query_param(id, CL_DEVICE_MAX_WORK_GROUP_SIZE, m_max_work_group_size); query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR, m_preferred_vector_width_char); query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, m_preferred_vector_width_short); query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, m_preferred_vector_width_int); query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG, m_preferred_vector_width_long); query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT, m_preferred_vector_width_float); query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, m_preferred_vector_width_double); #if defined(CL_VERSION_1_1) query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF, m_preferred_vector_width_half); query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR, m_native_vector_width_char); query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT, m_native_vector_width_short); query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_INT, m_native_vector_width_int); query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG, m_native_vector_width_long); query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT, m_native_vector_width_float); query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE, m_native_vector_width_double); query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF, m_native_vector_width_half); #endif query_param(id, CL_DEVICE_MAX_CLOCK_FREQUENCY, m_max_clock_frequency); query_param(id, CL_DEVICE_ADDRESS_BITS, m_address_bits); query_param(id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, m_max_mem_alloc_size); query_param(id, CL_DEVICE_IMAGE_SUPPORT, m_image_support); query_param(id, CL_DEVICE_MAX_READ_IMAGE_ARGS, m_max_read_image_args); query_param(id, CL_DEVICE_MAX_WRITE_IMAGE_ARGS, m_max_write_image_args); #if defined(CL_VERSION_2_0) query_param(id, CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS, m_max_read_write_image_args); #endif query_param(id, CL_DEVICE_IMAGE2D_MAX_WIDTH, m_image2d_max_width); query_param(id, CL_DEVICE_IMAGE2D_MAX_HEIGHT, m_image2d_max_height); query_param(id, CL_DEVICE_IMAGE3D_MAX_WIDTH, m_image3d_max_width); query_param(id, CL_DEVICE_IMAGE3D_MAX_HEIGHT, m_image3d_max_height); query_param(id, CL_DEVICE_IMAGE3D_MAX_DEPTH, m_image3d_max_depth); #if defined(CL_VERSION_1_2) query_param(id, CL_DEVICE_IMAGE_MAX_BUFFER_SIZE, m_image_max_buffer_size); query_param(id, CL_DEVICE_IMAGE_MAX_ARRAY_SIZE, m_image_max_array_size); #endif query_param(id, CL_DEVICE_MAX_SAMPLERS, m_max_samplers); #if defined(CL_VERSION_1_2) query_param(id, CL_DEVICE_IMAGE_PITCH_ALIGNMENT, m_image_pitch_alignment); query_param(id, CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT, m_image_base_address_alignment); #endif #if defined(CL_VERSION_2_0) query_param(id, CL_DEVICE_MAX_PIPE_ARGS, m_max_pipe_args); query_param(id, CL_DEVICE_PIPE_MAX_ACTIVE_RESERVATIONS, m_pipe_max_active_reservations); query_param(id, CL_DEVICE_PIPE_MAX_PACKET_SIZE, m_pipe_max_packet_size); #endif query_param(id, CL_DEVICE_MAX_PARAMETER_SIZE, m_max_parameter_size); query_param(id, CL_DEVICE_MEM_BASE_ADDR_ALIGN, m_mem_base_addr_align); query_param(id, CL_DEVICE_SINGLE_FP_CONFIG, m_single_fp_config); #if defined(CL_VERSION_1_2) query_param(id, CL_DEVICE_DOUBLE_FP_CONFIG, m_double_fp_config); #endif query_param(id, CL_DEVICE_GLOBAL_MEM_CACHE_TYPE, m_global_mem_cache_type); query_param(id, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, m_global_mem_cacheline_size); query_param(id, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, m_global_mem_cache_size); query_param(id, CL_DEVICE_GLOBAL_MEM_SIZE, m_global_mem_size); query_param(id, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, m_max_constant_buffer_size); query_param(id, CL_DEVICE_MAX_CONSTANT_ARGS, m_max_constant_args); #if defined(CL_VERSION_2_0) query_param(id, CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE, m_max_global_variable_size); query_param(id, CL_DEVICE_GLOBAL_VARIABLE_PREFERRED_TOTAL_SIZE, m_global_variable_preferred_total_size); #endif query_param(id, CL_DEVICE_LOCAL_MEM_TYPE, m_local_mem_type); query_param(id, CL_DEVICE_LOCAL_MEM_SIZE, m_local_mem_size); query_param(id, CL_DEVICE_ERROR_CORRECTION_SUPPORT, m_error_correction_support); #if defined(CL_VERSION_1_1) query_param(id, CL_DEVICE_HOST_UNIFIED_MEMORY, m_host_unified_memory); #endif query_param(id, CL_DEVICE_PROFILING_TIMER_RESOLUTION, m_profiling_timer_resolution); query_param(id, CL_DEVICE_ENDIAN_LITTLE, m_endian_little); query_param(id, CL_DEVICE_AVAILABLE, m_available); query_param(id, CL_DEVICE_COMPILER_AVAILABLE, m_compiler_available); #if defined(CL_VERSION_1_2) query_param(id, CL_DEVICE_LINKER_AVAILABLE, m_linker_available); #endif query_param(id, CL_DEVICE_EXECUTION_CAPABILITIES, m_execution_capabilities); query_param(id, CL_DEVICE_QUEUE_PROPERTIES, m_queue_properties); #if defined(CL_VERSION_2_0) query_param(id, CL_DEVICE_QUEUE_ON_HOST_PROPERTIES, m_queue_on_host_properties); query_param(id, CL_DEVICE_QUEUE_ON_DEVICE_PROPERTIES, m_queue_on_device_properties); query_param(id, CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE, m_queue_on_device_preferred_size); query_param(id, CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE, m_queue_on_device_max_size); query_param(id, CL_DEVICE_MAX_ON_DEVICE_QUEUES, m_max_on_device_queues); query_param(id, CL_DEVICE_MAX_ON_DEVICE_EVENTS, m_max_on_device_events); #endif #if defined(CL_VERSION_1_2) query_param(id, CL_DEVICE_BUILT_IN_KERNELS, m_built_in_kernels); #endif query_param(id, CL_DEVICE_PLATFORM, m_platform); query_param(id, CL_DEVICE_NAME, m_name); query_param(id, CL_DEVICE_VENDOR, m_vendor); query_param(id, CL_DRIVER_VERSION, m_driver_version); query_param(id, CL_DEVICE_PROFILE, m_profile); query_param(id, CL_DEVICE_VERSION, m_version); #if defined(CL_VERSION_1_1) query_param(id, CL_DEVICE_OPENCL_C_VERSION, m_opencl_c_version); #endif query_param(id, CL_DEVICE_EXTENSIONS, m_extensions); #if defined(CL_VERSION_1_2) query_param(id, CL_DEVICE_PRINTF_BUFFER_SIZE, m_printf_buffer_size); query_param(id, CL_DEVICE_PREFERRED_INTEROP_USER_SYNC, m_preferred_interop_user_sync); query_param(id, CL_DEVICE_PARENT_DEVICE, m_parent_device); query_param(id, CL_DEVICE_PARTITION_MAX_SUB_DEVICES, m_partition_max_sub_devices); query_param(id, CL_DEVICE_PARTITION_PROPERTIES, m_partition_properties); query_param(id, CL_DEVICE_PARTITION_AFFINITY_DOMAIN, m_partition_affinity_domain); query_param(id, CL_DEVICE_PARTITION_TYPE, m_partition_type); query_param(id, CL_DEVICE_REFERENCE_COUNT, m_reference_count); #endif return CL_SUCCESS; } std::string Name() { return m_name; } private: template cl_int query_param(cl_device_id id, cl_device_info param, T& value) { cl_int res; size_t size = 0; res = clGetDeviceInfo(id, param, 0, 0, &size); if (CL_SUCCESS != res && size != 0) throw std::runtime_error(std::string("clGetDeviceInfo failed")); if (0 == size) return CL_SUCCESS; if (sizeof(T) != size) throw std::runtime_error(std::string("clGetDeviceInfo: param size mismatch")); res = clGetDeviceInfo(id, param, size, &value, 0); if (CL_SUCCESS != res) throw std::runtime_error(std::string("clGetDeviceInfo failed")); return CL_SUCCESS; } template cl_int query_param(cl_device_id id, cl_device_info param, std::vector& value) { cl_int res; size_t size; res = clGetDeviceInfo(id, param, 0, 0, &size); if (CL_SUCCESS != res) throw std::runtime_error(std::string("clGetDeviceInfo failed")); if (0 == size) return CL_SUCCESS; value.resize(size / sizeof(T)); res = clGetDeviceInfo(id, param, size, &value[0], 0); if (CL_SUCCESS != res) throw std::runtime_error(std::string("clGetDeviceInfo failed")); return CL_SUCCESS; } cl_int query_param(cl_device_id id, cl_device_info param, std::string& value) { cl_int res; size_t size; res = clGetDeviceInfo(id, param, 0, 0, &size); if (CL_SUCCESS != res) throw std::runtime_error(std::string("clGetDeviceInfo failed")); value.resize(size + 1); res = clGetDeviceInfo(id, param, size, &value[0], 0); if (CL_SUCCESS != res) throw std::runtime_error(std::string("clGetDeviceInfo failed")); // just in case, ensure trailing zero for ASCIIZ string value[size] = 0; return CL_SUCCESS; } private: cl_device_type m_type; cl_uint m_vendor_id; cl_uint m_max_compute_units; cl_uint m_max_work_item_dimensions; std::vector m_max_work_item_sizes; size_t m_max_work_group_size; cl_uint m_preferred_vector_width_char; cl_uint m_preferred_vector_width_short; cl_uint m_preferred_vector_width_int; cl_uint m_preferred_vector_width_long; cl_uint m_preferred_vector_width_float; cl_uint m_preferred_vector_width_double; #if defined(CL_VERSION_1_1) cl_uint m_preferred_vector_width_half; cl_uint m_native_vector_width_char; cl_uint m_native_vector_width_short; cl_uint m_native_vector_width_int; cl_uint m_native_vector_width_long; cl_uint m_native_vector_width_float; cl_uint m_native_vector_width_double; cl_uint m_native_vector_width_half; #endif cl_uint m_max_clock_frequency; cl_uint m_address_bits; cl_ulong m_max_mem_alloc_size; cl_bool m_image_support; cl_uint m_max_read_image_args; cl_uint m_max_write_image_args; #if defined(CL_VERSION_2_0) cl_uint m_max_read_write_image_args; #endif size_t m_image2d_max_width; size_t m_image2d_max_height; size_t m_image3d_max_width; size_t m_image3d_max_height; size_t m_image3d_max_depth; #if defined(CL_VERSION_1_2) size_t m_image_max_buffer_size; size_t m_image_max_array_size; #endif cl_uint m_max_samplers; #if defined(CL_VERSION_1_2) cl_uint m_image_pitch_alignment; cl_uint m_image_base_address_alignment; #endif #if defined(CL_VERSION_2_0) cl_uint m_max_pipe_args; cl_uint m_pipe_max_active_reservations; cl_uint m_pipe_max_packet_size; #endif size_t m_max_parameter_size; cl_uint m_mem_base_addr_align; cl_device_fp_config m_single_fp_config; #if defined(CL_VERSION_1_2) cl_device_fp_config m_double_fp_config; #endif cl_device_mem_cache_type m_global_mem_cache_type; cl_uint m_global_mem_cacheline_size; cl_ulong m_global_mem_cache_size; cl_ulong m_global_mem_size; cl_ulong m_max_constant_buffer_size; cl_uint m_max_constant_args; #if defined(CL_VERSION_2_0) size_t m_max_global_variable_size; size_t m_global_variable_preferred_total_size; #endif cl_device_local_mem_type m_local_mem_type; cl_ulong m_local_mem_size; cl_bool m_error_correction_support; #if defined(CL_VERSION_1_1) cl_bool m_host_unified_memory; #endif size_t m_profiling_timer_resolution; cl_bool m_endian_little; cl_bool m_available; cl_bool m_compiler_available; #if defined(CL_VERSION_1_2) cl_bool m_linker_available; #endif cl_device_exec_capabilities m_execution_capabilities; cl_command_queue_properties m_queue_properties; #if defined(CL_VERSION_2_0) cl_command_queue_properties m_queue_on_host_properties; cl_command_queue_properties m_queue_on_device_properties; cl_uint m_queue_on_device_preferred_size; cl_uint m_queue_on_device_max_size; cl_uint m_max_on_device_queues; cl_uint m_max_on_device_events; #endif #if defined(CL_VERSION_1_2) std::string m_built_in_kernels; #endif cl_platform_id m_platform; std::string m_name; std::string m_vendor; std::string m_driver_version; std::string m_profile; std::string m_version; #if defined(CL_VERSION_1_1) std::string m_opencl_c_version; #endif std::string m_extensions; #if defined(CL_VERSION_1_2) size_t m_printf_buffer_size; cl_bool m_preferred_interop_user_sync; cl_device_id m_parent_device; cl_uint m_partition_max_sub_devices; std::vector m_partition_properties; cl_device_affinity_domain m_partition_affinity_domain; std::vector m_partition_type; cl_uint m_reference_count; #endif }; } // namespace opencl class App { public: App(CommandLineParser& cmd); ~App(); int initOpenCL(); int initVideoSource(); int process_frame_with_open_cl(cv::Mat& frame, bool use_buffer, cl_mem* cl_buffer); int process_cl_buffer_with_opencv(cl_mem buffer, size_t step, int rows, int cols, int type, cv::UMat& u); int process_cl_image_with_opencv(cl_mem image, cv::UMat& u); int run(); bool isRunning() { return m_running; } bool doProcess() { return m_process; } bool useBuffer() { return m_use_buffer; } void setRunning(bool running) { m_running = running; } void setDoProcess(bool process) { m_process = process; } void setUseBuffer(bool use_buffer) { m_use_buffer = use_buffer; } protected: bool nextFrame(cv::Mat& frame) { return m_cap.read(frame); } void handleKey(char key); void timerStart(); void timerEnd(); std::string timeStr() const; std::string message() const; private: bool m_running; bool m_process; bool m_use_buffer; int64 m_t0; int64 m_t1; float m_time; float m_frequency; string m_file_name; int m_camera_id; cv::VideoCapture m_cap; cv::Mat m_frame; cv::Mat m_frameGray; opencl::PlatformInfo m_platformInfo; opencl::DeviceInfo m_deviceInfo; std::vector m_platform_ids; cl_context m_context; cl_device_id m_device_id; cl_command_queue m_queue; cl_program m_program; cl_kernel m_kernelBuf; cl_kernel m_kernelImg; cl_mem m_img_src; // used as src in case processing of cl image cl_mem m_mem_obj; cl_event m_event; }; App::App(CommandLineParser& cmd) { cout << "\nPress ESC to exit\n" << endl; cout << "\n 'p' to toggle ON/OFF processing\n" << endl; cout << "\n SPACE to switch between OpenCL buffer/image\n" << endl; m_camera_id = cmd.get("camera"); m_file_name = cmd.get("video"); m_running = false; m_process = false; m_use_buffer = false; m_t0 = 0; m_t1 = 0; m_time = 0.0; m_frequency = (float)cv::getTickFrequency(); m_context = 0; m_device_id = 0; m_queue = 0; m_program = 0; m_kernelBuf = 0; m_kernelImg = 0; m_img_src = 0; m_mem_obj = 0; m_event = 0; } // ctor App::~App() { if (m_queue) { clFinish(m_queue); clReleaseCommandQueue(m_queue); m_queue = 0; } if (m_program) { clReleaseProgram(m_program); m_program = 0; } if (m_img_src) { clReleaseMemObject(m_img_src); m_img_src = 0; } if (m_mem_obj) { clReleaseMemObject(m_mem_obj); m_mem_obj = 0; } if (m_event) { clReleaseEvent(m_event); } if (m_kernelBuf) { clReleaseKernel(m_kernelBuf); m_kernelBuf = 0; } if (m_kernelImg) { clReleaseKernel(m_kernelImg); m_kernelImg = 0; } if (m_device_id) { clReleaseDevice(m_device_id); m_device_id = 0; } if (m_context) { clReleaseContext(m_context); m_context = 0; } } // dtor int App::initOpenCL() { cl_int res = CL_SUCCESS; cl_uint num_entries = 0; res = clGetPlatformIDs(0, 0, &num_entries); if (CL_SUCCESS != res) return -1; m_platform_ids.resize(num_entries); res = clGetPlatformIDs(num_entries, &m_platform_ids[0], 0); if (CL_SUCCESS != res) return -1; unsigned int i; // create context from first platform with GPU device for (i = 0; i < m_platform_ids.size(); i++) { cl_context_properties props[] = { CL_CONTEXT_PLATFORM, (cl_context_properties)(m_platform_ids[i]), 0 }; m_context = clCreateContextFromType(props, CL_DEVICE_TYPE_GPU, 0, 0, &res); if (0 == m_context || CL_SUCCESS != res) continue; res = clGetContextInfo(m_context, CL_CONTEXT_DEVICES, sizeof(cl_device_id), &m_device_id, 0); if (CL_SUCCESS != res) return -1; m_queue = clCreateCommandQueue(m_context, m_device_id, 0, &res); if (0 == m_queue || CL_SUCCESS != res) return -1; const char* kernelSrc = "__kernel " "void bitwise_inv_buf_8uC1(" " __global unsigned char* pSrcDst," " int srcDstStep," " int rows," " int cols)" "{" " int x = get_global_id(0);" " int y = get_global_id(1);" " int idx = mad24(y, srcDstStep, x);" " pSrcDst[idx] = ~pSrcDst[idx];" "}" "__kernel " "void bitwise_inv_img_8uC1(" " read_only image2d_t srcImg," " write_only image2d_t dstImg)" "{" " int x = get_global_id(0);" " int y = get_global_id(1);" " int2 coord = (int2)(x, y);" " uint4 val = read_imageui(srcImg, coord);" " val.x = (~val.x) & 0x000000FF;" " write_imageui(dstImg, coord, val);" "}"; size_t len = strlen(kernelSrc); m_program = clCreateProgramWithSource(m_context, 1, &kernelSrc, &len, &res); if (0 == m_program || CL_SUCCESS != res) return -1; res = clBuildProgram(m_program, 1, &m_device_id, 0, 0, 0); if (CL_SUCCESS != res) return -1; m_kernelBuf = clCreateKernel(m_program, "bitwise_inv_buf_8uC1", &res); if (0 == m_kernelBuf || CL_SUCCESS != res) return -1; m_kernelImg = clCreateKernel(m_program, "bitwise_inv_img_8uC1", &res); if (0 == m_kernelImg || CL_SUCCESS != res) return -1; m_platformInfo.QueryInfo(m_platform_ids[i]); m_deviceInfo.QueryInfo(m_device_id); // attach OpenCL context to OpenCV cv::ocl::attachContext(m_platformInfo.Name(), m_platform_ids[i], m_context, m_device_id); break; } return m_context != 0 ? CL_SUCCESS : -1; } // initOpenCL() int App::initVideoSource() { try { if (!m_file_name.empty() && m_camera_id == -1) { m_cap.open(m_file_name.c_str()); if (!m_cap.isOpened()) throw std::runtime_error(std::string("can't open video file: " + m_file_name)); } else if (m_camera_id != -1) { m_cap.open(m_camera_id); if (!m_cap.isOpened()) { std::stringstream msg; msg << "can't open camera: " << m_camera_id; throw std::runtime_error(msg.str()); } } else throw std::runtime_error(std::string("specify video source")); } catch (std::exception e) { cerr << "ERROR: " << e.what() << std::endl; return -1; } return 0; } // initVideoSource() // this function is an example of "typical" OpenCL processing pipeline // It creates OpenCL buffer or image, depending on use_buffer flag, // from input media frame and process these data // (inverts each pixel value in half of frame) with OpenCL kernel int App::process_frame_with_open_cl(cv::Mat& frame, bool use_buffer, cl_mem* mem_obj) { cl_int res = CL_SUCCESS; CV_Assert(mem_obj); cl_kernel kernel = 0; cl_mem mem = mem_obj[0]; if (0 == mem || 0 == m_img_src) { // allocate/delete cl memory objects every frame for the simplicity. // in real applicaton more efficient pipeline can be built. if (use_buffer) { cl_mem_flags flags = CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR; mem = clCreateBuffer(m_context, flags, frame.total(), frame.ptr(), &res); if (0 == mem || CL_SUCCESS != res) return -1; res = clSetKernelArg(m_kernelBuf, 0, sizeof(cl_mem), &mem); if (CL_SUCCESS != res) return -1; res = clSetKernelArg(m_kernelBuf, 1, sizeof(int), &frame.step[0]); if (CL_SUCCESS != res) return -1; res = clSetKernelArg(m_kernelBuf, 2, sizeof(int), &frame.rows); if (CL_SUCCESS != res) return -1; int cols2 = frame.cols / 2; res = clSetKernelArg(m_kernelBuf, 3, sizeof(int), &cols2); if (CL_SUCCESS != res) return -1; kernel = m_kernelBuf; } else { cl_mem_flags flags_src = CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR; cl_image_format fmt; fmt.image_channel_order = CL_R; fmt.image_channel_data_type = CL_UNSIGNED_INT8; cl_image_desc desc_src; desc_src.image_type = CL_MEM_OBJECT_IMAGE2D; desc_src.image_width = frame.cols; desc_src.image_height = frame.rows; desc_src.image_depth = 0; desc_src.image_array_size = 0; desc_src.image_row_pitch = frame.step[0]; desc_src.image_slice_pitch = 0; desc_src.num_mip_levels = 0; desc_src.num_samples = 0; desc_src.buffer = 0; m_img_src = clCreateImage(m_context, flags_src, &fmt, &desc_src, frame.ptr(), &res); if (0 == m_img_src || CL_SUCCESS != res) return -1; cl_mem_flags flags_dst = CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR; cl_image_desc desc_dst; desc_dst.image_type = CL_MEM_OBJECT_IMAGE2D; desc_dst.image_width = frame.cols; desc_dst.image_height = frame.rows; desc_dst.image_depth = 0; desc_dst.image_array_size = 0; desc_dst.image_row_pitch = 0; desc_dst.image_slice_pitch = 0; desc_dst.num_mip_levels = 0; desc_dst.num_samples = 0; desc_dst.buffer = 0; mem = clCreateImage(m_context, flags_dst, &fmt, &desc_dst, 0, &res); if (0 == mem || CL_SUCCESS != res) return -1; size_t origin[] = { 0, 0, 0 }; size_t region[] = { frame.cols, frame.rows, 1 }; res = clEnqueueCopyImage(m_queue, m_img_src, mem, origin, origin, region, 0, 0, &m_event); if (CL_SUCCESS != res) return -1; res = clWaitForEvents(1, &m_event); if (CL_SUCCESS != res) return -1; res = clSetKernelArg(m_kernelImg, 0, sizeof(cl_mem), &m_img_src); if (CL_SUCCESS != res) return -1; res = clSetKernelArg(m_kernelImg, 1, sizeof(cl_mem), &mem); if (CL_SUCCESS != res) return -1; kernel = m_kernelImg; } } m_event = clCreateUserEvent(m_context, &res); if (0 == m_event || CL_SUCCESS != res) return -1; // process left half of frame in OpenCL size_t size[] = { frame.cols / 2, frame.rows }; res = clEnqueueNDRangeKernel(m_queue, kernel, 2, 0, size, 0, 0, 0, &m_event); if (CL_SUCCESS != res) return -1; res = clWaitForEvents(1, &m_event); if (CL_SUCCESS != res) return - 1; mem_obj[0] = mem; return 0; } // this function is an example of interoperability between OpenCL buffer // and OpenCV UMat objects. It converts (without copying data) OpenCL buffer // to OpenCV UMat and then do blur on these data int App::process_cl_buffer_with_opencv(cl_mem buffer, size_t step, int rows, int cols, int type, cv::UMat& u) { cv::ocl::convertFromBuffer(buffer, step, rows, cols, type, u); // process right half of frame in OpenCV cv::Point pt(u.cols / 2, 0); cv::Size sz(u.cols / 2, u.rows); cv::Rect roi(pt, sz); cv::UMat uroi(u, roi); cv::blur(uroi, uroi, cv::Size(7, 7), cv::Point(-3, -3)); if (buffer) clReleaseMemObject(buffer); m_mem_obj = 0; return 0; } // this function is an example of interoperability between OpenCL image // and OpenCV UMat objects. It converts OpenCL image // to OpenCV UMat and then do blur on these data int App::process_cl_image_with_opencv(cl_mem image, cv::UMat& u) { cv::ocl::convertFromImage(image, u); // process right half of frame in OpenCV cv::Point pt(u.cols / 2, 0); cv::Size sz(u.cols / 2, u.rows); cv::Rect roi(pt, sz); cv::UMat uroi(u, roi); cv::blur(uroi, uroi, cv::Size(7, 7), cv::Point(-3, -3)); if (image) clReleaseMemObject(image); m_mem_obj = 0; if (m_img_src) clReleaseMemObject(m_img_src); m_img_src = 0; return 0; } int App::run() { if (0 != initOpenCL()) return -1; if (0 != initVideoSource()) return -1; Mat img_to_show; // set running state until ESC pressed setRunning(true); // set process flag to show some data processing // can be toggled on/off by 'p' button setDoProcess(true); // set use buffer flag, // when it is set to true, will demo interop opencl buffer and cv::Umat, // otherwise demo interop opencl image and cv::UMat // can be switched on/of by SPACE button setUseBuffer(true); // Iterate over all frames while (isRunning() && nextFrame(m_frame)) { cv::cvtColor(m_frame, m_frameGray, COLOR_BGR2GRAY); UMat uframe; // work timerStart(); if (doProcess()) { process_frame_with_open_cl(m_frameGray, useBuffer(), &m_mem_obj); if (useBuffer()) process_cl_buffer_with_opencv( m_mem_obj, m_frameGray.step[0], m_frameGray.rows, m_frameGray.cols, m_frameGray.type(), uframe); else process_cl_image_with_opencv(m_mem_obj, uframe); } else { m_frameGray.copyTo(uframe); } timerEnd(); uframe.copyTo(img_to_show); putText(img_to_show, "Version : " + m_platformInfo.Version(), Point(5, 30), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2); putText(img_to_show, "Name : " + m_platformInfo.Name(), Point(5, 60), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2); putText(img_to_show, "Device : " + m_deviceInfo.Name(), Point(5, 90), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2); cv::String memtype = useBuffer() ? "buffer" : "image"; putText(img_to_show, "interop with OpenCL " + memtype, Point(5, 120), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2); putText(img_to_show, "Time : " + timeStr() + " msec", Point(5, 150), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2); imshow("opencl_interop", img_to_show); handleKey((char)waitKey(3)); } return 0; } void App::handleKey(char key) { switch (key) { case 27: setRunning(false); break; case ' ': setUseBuffer(!useBuffer()); break; case 'p': case 'P': setDoProcess( !doProcess() ); break; default: break; } } inline void App::timerStart() { m_t0 = getTickCount(); } inline void App::timerEnd() { m_t1 = getTickCount(); int64 delta = m_t1 - m_t0; m_time = (delta / m_frequency) * 1000; // units msec } inline string App::timeStr() const { stringstream ss; ss << std::fixed << std::setprecision(1) << m_time; return ss.str(); } int main(int argc, char** argv) { const char* keys = "{ help h ? | | print help message }" "{ camera c | -1 | use camera as input }" "{ video v | | use video as input }"; CommandLineParser cmd(argc, argv, keys); if (cmd.has("help")) { cmd.printMessage(); return EXIT_SUCCESS; } App app(cmd); try { app.run(); } catch (const cv::Exception& e) { cout << "error: " << e.what() << endl; return 1; } catch (const std::exception& e) { cout << "error: " << e.what() << endl; return 1; } catch (...) { cout << "unknown exception" << endl; return 1; } return EXIT_SUCCESS; } // main()