/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; cv::gpu::CudaMem::CudaMem() : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) { } cv::gpu::CudaMem::CudaMem(int _rows, int _cols, int _type, int _alloc_type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) { if( _rows > 0 && _cols > 0 ) create( _rows, _cols, _type, _alloc_type); } cv::gpu::CudaMem::CudaMem(Size _size, int _type, int _alloc_type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) { if( _size.height > 0 && _size.width > 0 ) create( _size.height, _size.width, _type, _alloc_type); } cv::gpu::CudaMem::CudaMem(const CudaMem& m) : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type) { if( refcount ) CV_XADD(refcount, 1); } cv::gpu::CudaMem::CudaMem(const Mat& m, int _alloc_type) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) { if( m.rows > 0 && m.cols > 0 ) create( m.size(), m.type(), _alloc_type); Mat tmp = createMatHeader(); m.copyTo(tmp); } cv::gpu::CudaMem::~CudaMem() { release(); } CudaMem& cv::gpu::CudaMem::operator = (const CudaMem& m) { if( this != &m ) { if( m.refcount ) CV_XADD(m.refcount, 1); release(); flags = m.flags; rows = m.rows; cols = m.cols; step = m.step; data = m.data; datastart = m.datastart; dataend = m.dataend; refcount = m.refcount; alloc_type = m.alloc_type; } return *this; } CudaMem cv::gpu::CudaMem::clone() const { CudaMem m(size(), type(), alloc_type); Mat to = m; Mat from = *this; from.copyTo(to); return m; } void cv::gpu::CudaMem::create(Size _size, int _type, int _alloc_type) { create(_size.height, _size.width, _type, _alloc_type); } Mat cv::gpu::CudaMem::createMatHeader() const { return Mat(size(), type(), data, step); } cv::gpu::CudaMem::operator Mat() const { return createMatHeader(); } cv::gpu::CudaMem::operator GpuMat() const { return createGpuMatHeader(); } bool cv::gpu::CudaMem::isContinuous() const { return (flags & Mat::CONTINUOUS_FLAG) != 0; } size_t cv::gpu::CudaMem::elemSize() const { return CV_ELEM_SIZE(flags); } size_t cv::gpu::CudaMem::elemSize1() const { return CV_ELEM_SIZE1(flags); } int cv::gpu::CudaMem::type() const { return CV_MAT_TYPE(flags); } int cv::gpu::CudaMem::depth() const { return CV_MAT_DEPTH(flags); } int cv::gpu::CudaMem::channels() const { return CV_MAT_CN(flags); } size_t cv::gpu::CudaMem::step1() const { return step/elemSize1(); } Size cv::gpu::CudaMem::size() const { return Size(cols, rows); } bool cv::gpu::CudaMem::empty() const { return data == 0; } #if !defined (HAVE_CUDA) void cv::gpu::registerPageLocked(Mat&) { throw_nogpu(); } void cv::gpu::unregisterPageLocked(Mat&) { throw_nogpu(); } void cv::gpu::CudaMem::create(int /*_rows*/, int /*_cols*/, int /*_type*/, int /*type_alloc*/) { throw_nogpu(); } bool cv::gpu::CudaMem::canMapHostMemory() { throw_nogpu(); return false; } void cv::gpu::CudaMem::release() { throw_nogpu(); } GpuMat cv::gpu::CudaMem::createGpuMatHeader () const { throw_nogpu(); return GpuMat(); } #else /* !defined (HAVE_CUDA) */ void registerPageLocked(Mat& m) { cudaSafeCall( cudaHostRegister(m.ptr(), m.step * m.rows, cudaHostRegisterPortable) ); } void unregisterPageLocked(Mat& m) { cudaSafeCall( cudaHostUnregister(m.ptr()) ); } bool cv::gpu::CudaMem::canMapHostMemory() { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, getDevice()) ); return (prop.canMapHostMemory != 0) ? true : false; } namespace { size_t alignUpStep(size_t what, size_t alignment) { size_t alignMask = alignment-1; size_t inverseAlignMask = ~alignMask; size_t res = (what + alignMask) & inverseAlignMask; return res; } } void cv::gpu::CudaMem::create(int _rows, int _cols, int _type, int _alloc_type) { if (_alloc_type == ALLOC_ZEROCOPY && !canMapHostMemory()) cv::gpu::error("ZeroCopy is not supported by current device", __FILE__, __LINE__); _type &= TYPE_MASK; if( rows == _rows && cols == _cols && type() == _type && data ) return; if( data ) release(); CV_DbgAssert( _rows >= 0 && _cols >= 0 ); if( _rows > 0 && _cols > 0 ) { flags = Mat::MAGIC_VAL + Mat::CONTINUOUS_FLAG + _type; rows = _rows; cols = _cols; step = elemSize()*cols; if (_alloc_type == ALLOC_ZEROCOPY) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, getDevice()) ); step = alignUpStep(step, prop.textureAlignment); } int64 _nettosize = (int64)step*rows; size_t nettosize = (size_t)_nettosize; if( _nettosize != (int64)nettosize ) CV_Error(CV_StsNoMem, "Too big buffer is allocated"); size_t datasize = alignSize(nettosize, (int)sizeof(*refcount)); //datastart = data = (uchar*)fastMalloc(datasize + sizeof(*refcount)); alloc_type = _alloc_type; void *ptr; switch (alloc_type) { case ALLOC_PAGE_LOCKED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocDefault) ); break; case ALLOC_ZEROCOPY: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocMapped) ); break; case ALLOC_WRITE_COMBINED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocWriteCombined) ); break; default: cv::gpu::error("Invalid alloc type", __FILE__, __LINE__); } datastart = data = (uchar*)ptr; dataend = data + nettosize; refcount = (int*)cv::fastMalloc(sizeof(*refcount)); *refcount = 1; } } GpuMat cv::gpu::CudaMem::createGpuMatHeader () const { GpuMat res; if (alloc_type == ALLOC_ZEROCOPY) { void *pdev; cudaSafeCall( cudaHostGetDevicePointer( &pdev, data, 0 ) ); res = GpuMat(rows, cols, type(), pdev, step); } else cv::gpu::error("Zero-copy is not supported or memory was allocated without zero-copy flag", __FILE__, __LINE__); return res; } void cv::gpu::CudaMem::release() { if( refcount && CV_XADD(refcount, -1) == 1 ) { cudaSafeCall( cudaFreeHost(datastart ) ); fastFree(refcount); } data = datastart = dataend = 0; step = rows = cols = 0; refcount = 0; } #endif /* !defined (HAVE_CUDA) */