/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Peng Xiao, pengxiao@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/ocl/ocl.hpp" #include "opencv2/nonfree/nonfree.hpp" #include "opencv2/calib3d/calib3d.hpp" using namespace std; using namespace cv; using namespace cv::ocl; //#define USE_CPU_DESCRIPTOR // use cpu descriptor extractor until ocl descriptor extractor is fixed //#define USE_CPU_BFMATCHER void help() { cout << "\nThis program demonstrates using SURF_OCL features detector and descriptor extractor" << endl; cout << "\nUsage:\n\tsurf_matcher --left --right " << endl; } //////////////////////////////////////////////////// // This program demonstrates the usage of SURF_OCL. // use cpu findHomography interface to calculate the transformation matrix int main(int argc, char* argv[]) { if (argc != 5 && argc != 1) { help(); return -1; } vector info; if(!cv::ocl::getDevice(info)) { cout << "Error: Did not find a valid OpenCL device!" << endl; return -1; } Mat cpu_img1, cpu_img2, cpu_img1_grey, cpu_img2_grey; oclMat img1, img2; if(argc != 5) { cpu_img1 = imread("o.png"); cvtColor(cpu_img1, cpu_img1_grey, CV_BGR2GRAY); img1 = cpu_img1_grey; CV_Assert(!img1.empty()); cpu_img2 = imread("r2.png"); cvtColor(cpu_img2, cpu_img2_grey, CV_BGR2GRAY); img2 = cpu_img2_grey; } else { for (int i = 1; i < argc; ++i) { if (string(argv[i]) == "--left") { cpu_img1 = imread(argv[++i]); cvtColor(cpu_img1, cpu_img1_grey, CV_BGR2GRAY); img1 = cpu_img1_grey; CV_Assert(!img1.empty()); } else if (string(argv[i]) == "--right") { cpu_img2 = imread(argv[++i]); cvtColor(cpu_img2, cpu_img2_grey, CV_BGR2GRAY); img2 = cpu_img2_grey; } else if (string(argv[i]) == "--help") { help(); return -1; } } } SURF_OCL surf; //surf.hessianThreshold = 400.f; //surf.extended = false; // detecting keypoints & computing descriptors oclMat keypoints1GPU, keypoints2GPU; oclMat descriptors1GPU, descriptors2GPU; // downloading results vector keypoints1, keypoints2; vector matches; #ifndef USE_CPU_DESCRIPTOR surf(img1, oclMat(), keypoints1GPU, descriptors1GPU); surf(img2, oclMat(), keypoints2GPU, descriptors2GPU); surf.downloadKeypoints(keypoints1GPU, keypoints1); surf.downloadKeypoints(keypoints2GPU, keypoints2); #ifdef USE_CPU_BFMATCHER //BFMatcher BFMatcher matcher(cv::NORM_L2); matcher.match(Mat(descriptors1GPU), Mat(descriptors2GPU), matches); #else BruteForceMatcher_OCL_base matcher(BruteForceMatcher_OCL_base::L2Dist); matcher.match(descriptors1GPU, descriptors2GPU, matches); #endif #else surf(img1, oclMat(), keypoints1GPU); surf(img2, oclMat(), keypoints2GPU); surf.downloadKeypoints(keypoints1GPU, keypoints1); surf.downloadKeypoints(keypoints2GPU, keypoints2); // use SURF_OCL to detect keypoints and use SURF to extract descriptors SURF surf_cpu; Mat descriptors1, descriptors2; surf_cpu(cpu_img1, Mat(), keypoints1, descriptors1, true); surf_cpu(cpu_img2, Mat(), keypoints2, descriptors2, true); matcher.match(descriptors1, descriptors2, matches); #endif cout << "OCL: FOUND " << keypoints1GPU.cols << " keypoints on first image" << endl; cout << "OCL: FOUND " << keypoints2GPU.cols << " keypoints on second image" << endl; double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints for( int i = 0; i < keypoints1.size(); i++ ) { double dist = matches[i].distance; if( dist < min_dist ) min_dist = dist; if( dist > max_dist ) max_dist = dist; } printf("-- Max dist : %f \n", max_dist ); printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 2.5*min_dist ) std::vector< DMatch > good_matches; for( int i = 0; i < keypoints1.size(); i++ ) { if( matches[i].distance < 3*min_dist ) { good_matches.push_back( matches[i]); } } // drawing the results Mat img_matches; drawMatches( cpu_img1, keypoints1, cpu_img2, keypoints2, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Localize the object std::vector obj; std::vector scene; for( int i = 0; i < good_matches.size(); i++ ) { //-- Get the keypoints from the good matches obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt ); scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt ); } Mat H = findHomography( obj, scene, CV_RANSAC ); //-- Get the corners from the image_1 ( the object to be "detected" ) std::vector obj_corners(4); obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( cpu_img1.cols, 0 ); obj_corners[2] = cvPoint( cpu_img1.cols, cpu_img1.rows ); obj_corners[3] = cvPoint( 0, cpu_img1.rows ); std::vector scene_corners(4); perspectiveTransform( obj_corners, scene_corners, H); //-- Draw lines between the corners (the mapped object in the scene - image_2 ) line( img_matches, scene_corners[0] + Point2f( cpu_img1.cols, 0), scene_corners[1] + Point2f( cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 ); line( img_matches, scene_corners[1] + Point2f( cpu_img1.cols, 0), scene_corners[2] + Point2f( cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 ); line( img_matches, scene_corners[2] + Point2f( cpu_img1.cols, 0), scene_corners[3] + Point2f( cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 ); line( img_matches, scene_corners[3] + Point2f( cpu_img1.cols, 0), scene_corners[0] + Point2f( cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 ); //-- Show detected matches namedWindow("ocl surf matches", 0); imshow("ocl surf matches", img_matches); waitKey(0); return 0; }