import numpy as np import cv2 from collections import namedtuple import video import common FLANN_INDEX_KDTREE = 1 FLANN_INDEX_LSH = 6 flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 MIN_MATCH_COUNT = 10 PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data') TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad') class PlaneTracker: def __init__(self): self.detector = cv2.ORB( nfeatures = 1000 ) self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) self.targets = [] def add_target(self, image, rect, data=None): '''Add a new tracking target.''' x0, y0, x1, y1 = rect raw_points, raw_descrs = self.detect_features(image) points, descs = [], [] for kp, desc in zip(raw_points, raw_descrs): x, y = kp.pt if x0 <= x <= x1 and y0 <= y <= y1: points.append(kp) descs.append(desc) descs = np.uint8(descs) self.matcher.add([descs]) target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=None) self.targets.append(target) def clear(self): '''Remove all targets''' self.targets = [] self.matcher.clear() def track(self, frame): '''Returns a list of detected TrackedTarget objects''' self.frame_points, self.frame_descrs = self.detect_features(frame) if len(self.frame_points) < MIN_MATCH_COUNT: return [] matches = self.matcher.knnMatch(self.frame_descrs, k = 2) matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75] if len(matches) < MIN_MATCH_COUNT: return [] matches_by_id = [[] for _ in xrange(len(self.targets))] for m in matches: matches_by_id[m.imgIdx].append(m) tracked = [] for imgIdx, matches in enumerate(matches_by_id): if len(matches) < MIN_MATCH_COUNT: continue target = self.targets[imgIdx] p0 = [target.keypoints[m.trainIdx].pt for m in matches] p1 = [self.frame_points[m.queryIdx].pt for m in matches] p0, p1 = np.float32((p0, p1)) H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0) status = status.ravel() != 0 if status.sum() < MIN_MATCH_COUNT: continue p0, p1 = p0[status], p1[status] x0, y0, x1, y1 = target.rect quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]) quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2) track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad) tracked.append(track) tracked.sort(key = lambda t: len(t.p0), reverse=True) return tracked def detect_features(self, frame): '''detect_features(self, frame) -> keypoints, descrs''' keypoints, descrs = self.detector.detectAndCompute(frame, None) if descrs is None: # detectAndCompute returns descs=None if not keypoints found descrs = [] return keypoints, descrs class App: def __init__(self, src): self.cap = video.create_capture(src) self.frame = None self.paused = False self.tracker = PlaneTracker() cv2.namedWindow('plane') self.rect_sel = common.RectSelector('plane', self.on_rect) def on_rect(self, rect): self.tracker.add_target(self.frame, rect) def run(self): while True: playing = not self.paused and not self.rect_sel.dragging if playing or self.frame is None: ret, frame = self.cap.read() if not ret: break self.frame = frame.copy() vis = self.frame.copy() if playing: tracked = self.tracker.track(self.frame) for tr in tracked: cv2.polylines(vis, [np.int32(tr.quad)], True, (255, 255, 255), 2) for (x, y) in np.int32(tr.p1): cv2.circle(vis, (x, y), 2, (255, 255, 255)) self.rect_sel.draw(vis) cv2.imshow('plane', vis) ch = cv2.waitKey(1) if ch == ord(' '): self.paused = not self.paused if ch == ord('c'): self.tracker.clear() if ch == 27: break if __name__ == '__main__': print __doc__ import sys try: video_src = sys.argv[1] except: video_src = 0 App(video_src).run()