# This file is a part of OpenCV project. # It is a subject to the license terms in the LICENSE file found in the top-level directory # of this distribution and at http://opencv.org/license.html. # # Copyright (C) 2018, Intel Corporation, all rights reserved. # Third party copyrights are property of their respective owners. # # Use this script to get the text graph representation (.pbtxt) of SSD-based # deep learning network trained in TensorFlow Object Detection API. # Then you can import it with a binary frozen graph (.pb) using readNetFromTensorflow() function. # See details and examples on the following wiki page: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API import argparse import re from math import sqrt from tf_text_graph_common import * class SSDAnchorGenerator: def __init__(self, min_scale, max_scale, num_layers, aspect_ratios, reduce_boxes_in_lowest_layer, image_width, image_height): self.min_scale = min_scale self.aspect_ratios = aspect_ratios self.reduce_boxes_in_lowest_layer = reduce_boxes_in_lowest_layer self.image_width = image_width self.image_height = image_height self.scales = [min_scale + (max_scale - min_scale) * i / (num_layers - 1) for i in range(num_layers)] + [1.0] def get(self, layer_id): if layer_id == 0 and self.reduce_boxes_in_lowest_layer: widths = [0.1, self.min_scale * sqrt(2.0), self.min_scale * sqrt(0.5)] heights = [0.1, self.min_scale / sqrt(2.0), self.min_scale / sqrt(0.5)] else: widths = [self.scales[layer_id] * sqrt(ar) for ar in self.aspect_ratios] heights = [self.scales[layer_id] / sqrt(ar) for ar in self.aspect_ratios] widths += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])] heights += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])] min_size = min(self.image_width, self.image_height) widths = [w * min_size for w in widths] heights = [h * min_size for h in heights] return widths, heights class MultiscaleAnchorGenerator: def __init__(self, min_level, aspect_ratios, scales_per_octave, anchor_scale): self.min_level = min_level self.aspect_ratios = aspect_ratios self.anchor_scale = anchor_scale self.scales = [2**(float(s) / scales_per_octave) for s in range(scales_per_octave)] def get(self, layer_id): widths = [] heights = [] for a in self.aspect_ratios: for s in self.scales: base_anchor_size = 2**(self.min_level + layer_id) * self.anchor_scale ar = sqrt(a) heights.append(base_anchor_size * s / ar) widths.append(base_anchor_size * s * ar) return widths, heights def createSSDGraph(modelPath, configPath, outputPath): # Nodes that should be kept. keepOps = ['Conv2D', 'BiasAdd', 'Add', 'AddV2', 'Relu', 'Relu6', 'Placeholder', 'FusedBatchNorm', 'DepthwiseConv2dNative', 'ConcatV2', 'Mul', 'MaxPool', 'AvgPool', 'Identity', 'Sub', 'ResizeNearestNeighbor', 'Pad', 'FusedBatchNormV3', 'Mean'] # Node with which prefixes should be removed prefixesToRemove = ('MultipleGridAnchorGenerator/', 'Concatenate/', 'Postprocessor/', 'Preprocessor/map') # Load a config file. config = readTextMessage(configPath) config = config['model'][0]['ssd'][0] num_classes = int(config['num_classes'][0]) fixed_shape_resizer = config['image_resizer'][0]['fixed_shape_resizer'][0] image_width = int(fixed_shape_resizer['width'][0]) image_height = int(fixed_shape_resizer['height'][0]) box_predictor = 'convolutional' if 'convolutional_box_predictor' in config['box_predictor'][0] else 'weight_shared_convolutional' anchor_generator = config['anchor_generator'][0] if 'ssd_anchor_generator' in anchor_generator: ssd_anchor_generator = anchor_generator['ssd_anchor_generator'][0] min_scale = float(ssd_anchor_generator['min_scale'][0]) max_scale = float(ssd_anchor_generator['max_scale'][0]) num_layers = int(ssd_anchor_generator['num_layers'][0]) aspect_ratios = [float(ar) for ar in ssd_anchor_generator['aspect_ratios']] reduce_boxes_in_lowest_layer = True if 'reduce_boxes_in_lowest_layer' in ssd_anchor_generator: reduce_boxes_in_lowest_layer = ssd_anchor_generator['reduce_boxes_in_lowest_layer'][0] == 'true' priors_generator = SSDAnchorGenerator(min_scale, max_scale, num_layers, aspect_ratios, reduce_boxes_in_lowest_layer, image_width, image_height) print('Scale: [%f-%f]' % (min_scale, max_scale)) print('Aspect ratios: %s' % str(aspect_ratios)) print('Reduce boxes in the lowest layer: %s' % str(reduce_boxes_in_lowest_layer)) elif 'multiscale_anchor_generator' in anchor_generator: multiscale_anchor_generator = anchor_generator['multiscale_anchor_generator'][0] min_level = int(multiscale_anchor_generator['min_level'][0]) max_level = int(multiscale_anchor_generator['max_level'][0]) anchor_scale = float(multiscale_anchor_generator['anchor_scale'][0]) aspect_ratios = [float(ar) for ar in multiscale_anchor_generator['aspect_ratios']] scales_per_octave = int(multiscale_anchor_generator['scales_per_octave'][0]) num_layers = max_level - min_level + 1 priors_generator = MultiscaleAnchorGenerator(min_level, aspect_ratios, scales_per_octave, anchor_scale) print('Levels: [%d-%d]' % (min_level, max_level)) print('Anchor scale: %f' % anchor_scale) print('Scales per octave: %d' % scales_per_octave) print('Aspect ratios: %s' % str(aspect_ratios)) else: print('Unknown anchor_generator') exit(0) print('Number of classes: %d' % num_classes) print('Number of layers: %d' % num_layers) print('box predictor: %s' % box_predictor) print('Input image size: %dx%d' % (image_width, image_height)) # Read the graph. _inpNames = ['image_tensor'] outNames = ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes'] writeTextGraph(modelPath, outputPath, outNames) graph_def = parseTextGraph(outputPath) def getUnconnectedNodes(): unconnected = [] for node in graph_def.node: unconnected.append(node.name) for inp in node.input: if inp in unconnected: unconnected.remove(inp) return unconnected def fuse_nodes(nodesToKeep): # Detect unfused batch normalization nodes and fuse them. # Add_0 <-- moving_variance, add_y # Rsqrt <-- Add_0 # Mul_0 <-- Rsqrt, gamma # Mul_1 <-- input, Mul_0 # Mul_2 <-- moving_mean, Mul_0 # Sub_0 <-- beta, Mul_2 # Add_1 <-- Mul_1, Sub_0 nodesMap = {node.name: node for node in graph_def.node} subgraphBatchNorm = ['Add', ['Mul', 'input', ['Mul', ['Rsqrt', ['Add', 'moving_variance', 'add_y']], 'gamma']], ['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]] subgraphBatchNormV2 = ['AddV2', ['Mul', 'input', ['Mul', ['Rsqrt', ['AddV2', 'moving_variance', 'add_y']], 'gamma']], ['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]] # Detect unfused nearest neighbor resize. subgraphResizeNN = ['Reshape', ['Mul', ['Reshape', 'input', ['Pack', 'shape_1', 'shape_2', 'shape_3', 'shape_4', 'shape_5']], 'ones'], ['Pack', ['StridedSlice', ['Shape', 'input'], 'stack', 'stack_1', 'stack_2'], 'out_height', 'out_width', 'out_channels']] def checkSubgraph(node, targetNode, inputs, fusedNodes): op = targetNode[0] if node.op == op and (len(node.input) >= len(targetNode) - 1): fusedNodes.append(node) for i, inpOp in enumerate(targetNode[1:]): if isinstance(inpOp, list): if not node.input[i] in nodesMap or \ not checkSubgraph(nodesMap[node.input[i]], inpOp, inputs, fusedNodes): return False else: inputs[inpOp] = node.input[i] return True else: return False nodesToRemove = [] for node in graph_def.node: inputs = {} fusedNodes = [] if checkSubgraph(node, subgraphBatchNorm, inputs, fusedNodes) or \ checkSubgraph(node, subgraphBatchNormV2, inputs, fusedNodes): name = node.name node.Clear() node.name = name node.op = 'FusedBatchNorm' node.input.append(inputs['input']) node.input.append(inputs['gamma']) node.input.append(inputs['beta']) node.input.append(inputs['moving_mean']) node.input.append(inputs['moving_variance']) node.addAttr('epsilon', 0.001) nodesToRemove += fusedNodes[1:] inputs = {} fusedNodes = [] if checkSubgraph(node, subgraphResizeNN, inputs, fusedNodes): name = node.name node.Clear() node.name = name node.op = 'ResizeNearestNeighbor' node.input.append(inputs['input']) node.input.append(name + '/output_shape') out_height_node = nodesMap[inputs['out_height']] out_width_node = nodesMap[inputs['out_width']] out_height = int(out_height_node.attr['value']['tensor'][0]['int_val'][0]) out_width = int(out_width_node.attr['value']['tensor'][0]['int_val'][0]) shapeNode = NodeDef() shapeNode.name = name + '/output_shape' shapeNode.op = 'Const' shapeNode.addAttr('value', [out_height, out_width]) graph_def.node.insert(graph_def.node.index(node), shapeNode) nodesToKeep.append(shapeNode.name) nodesToRemove += fusedNodes[1:] for node in nodesToRemove: graph_def.node.remove(node) nodesToKeep = [] fuse_nodes(nodesToKeep) removeIdentity(graph_def) def to_remove(name, op): return (not name in nodesToKeep) and \ (op == 'Const' or (not op in keepOps) or name.startswith(prefixesToRemove)) removeUnusedNodesAndAttrs(to_remove, graph_def) # Connect input node to the first layer assert(graph_def.node[0].op == 'Placeholder') try: input_shape = graph_def.node[0].attr['shape']['shape'][0]['dim'] input_shape[1]['size'] = image_height input_shape[2]['size'] = image_width except: print("Input shapes are undefined") # assert(graph_def.node[1].op == 'Conv2D') weights = graph_def.node[1].input[-1] for i in range(len(graph_def.node[1].input)): graph_def.node[1].input.pop() graph_def.node[1].input.append(graph_def.node[0].name) graph_def.node[1].input.append(weights) # Create SSD postprocessing head ############################################### # Concatenate predictions of classes, predictions of bounding boxes and proposals. def addConcatNode(name, inputs, axisNodeName): concat = NodeDef() concat.name = name concat.op = 'ConcatV2' for inp in inputs: concat.input.append(inp) concat.input.append(axisNodeName) graph_def.node.extend([concat]) addConstNode('concat/axis_flatten', [-1], graph_def) addConstNode('PriorBox/concat/axis', [-2], graph_def) for label in ['ClassPredictor', 'BoxEncodingPredictor' if box_predictor is 'convolutional' else 'BoxPredictor']: concatInputs = [] for i in range(num_layers): # Flatten predictions flatten = NodeDef() if box_predictor is 'convolutional': inpName = 'BoxPredictor_%d/%s/BiasAdd' % (i, label) else: if i == 0: inpName = 'WeightSharedConvolutionalBoxPredictor/%s/BiasAdd' % label else: inpName = 'WeightSharedConvolutionalBoxPredictor_%d/%s/BiasAdd' % (i, label) flatten.input.append(inpName) flatten.name = inpName + '/Flatten' flatten.op = 'Flatten' concatInputs.append(flatten.name) graph_def.node.extend([flatten]) addConcatNode('%s/concat' % label, concatInputs, 'concat/axis_flatten') num_matched_layers = 0 for node in graph_def.node: if re.match('BoxPredictor_\d/BoxEncodingPredictor/convolution', node.name) or \ re.match('BoxPredictor_\d/BoxEncodingPredictor/Conv2D', node.name) or \ re.match('WeightSharedConvolutionalBoxPredictor(_\d)*/BoxPredictor/Conv2D', node.name): node.addAttr('loc_pred_transposed', True) num_matched_layers += 1 assert(num_matched_layers == num_layers) # Add layers that generate anchors (bounding boxes proposals). priorBoxes = [] boxCoder = config['box_coder'][0] fasterRcnnBoxCoder = boxCoder['faster_rcnn_box_coder'][0] boxCoderVariance = [1.0/float(fasterRcnnBoxCoder['x_scale'][0]), 1.0/float(fasterRcnnBoxCoder['y_scale'][0]), 1.0/float(fasterRcnnBoxCoder['width_scale'][0]), 1.0/float(fasterRcnnBoxCoder['height_scale'][0])] for i in range(num_layers): priorBox = NodeDef() priorBox.name = 'PriorBox_%d' % i priorBox.op = 'PriorBox' if box_predictor is 'convolutional': priorBox.input.append('BoxPredictor_%d/BoxEncodingPredictor/BiasAdd' % i) else: if i == 0: priorBox.input.append('WeightSharedConvolutionalBoxPredictor/BoxPredictor/Conv2D') else: priorBox.input.append('WeightSharedConvolutionalBoxPredictor_%d/BoxPredictor/BiasAdd' % i) priorBox.input.append(graph_def.node[0].name) # image_tensor priorBox.addAttr('flip', False) priorBox.addAttr('clip', False) widths, heights = priors_generator.get(i) priorBox.addAttr('width', widths) priorBox.addAttr('height', heights) priorBox.addAttr('variance', boxCoderVariance) graph_def.node.extend([priorBox]) priorBoxes.append(priorBox.name) # Compare this layer's output with Postprocessor/Reshape addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten') # Sigmoid for classes predictions and DetectionOutput layer addReshape('ClassPredictor/concat', 'ClassPredictor/concat3d', [0, -1, num_classes + 1], graph_def) sigmoid = NodeDef() sigmoid.name = 'ClassPredictor/concat/sigmoid' sigmoid.op = 'Sigmoid' sigmoid.input.append('ClassPredictor/concat3d') graph_def.node.extend([sigmoid]) addFlatten(sigmoid.name, sigmoid.name + '/Flatten', graph_def) detectionOut = NodeDef() detectionOut.name = 'detection_out' detectionOut.op = 'DetectionOutput' if box_predictor == 'convolutional': detectionOut.input.append('BoxEncodingPredictor/concat') else: detectionOut.input.append('BoxPredictor/concat') detectionOut.input.append(sigmoid.name + '/Flatten') detectionOut.input.append('PriorBox/concat') detectionOut.addAttr('num_classes', num_classes + 1) detectionOut.addAttr('share_location', True) detectionOut.addAttr('background_label_id', 0) postProcessing = config['post_processing'][0] batchNMS = postProcessing['batch_non_max_suppression'][0] if 'iou_threshold' in batchNMS: detectionOut.addAttr('nms_threshold', float(batchNMS['iou_threshold'][0])) else: detectionOut.addAttr('nms_threshold', 0.6) if 'score_threshold' in batchNMS: detectionOut.addAttr('confidence_threshold', float(batchNMS['score_threshold'][0])) else: detectionOut.addAttr('confidence_threshold', 0.01) if 'max_detections_per_class' in batchNMS: detectionOut.addAttr('top_k', int(batchNMS['max_detections_per_class'][0])) else: detectionOut.addAttr('top_k', 100) if 'max_total_detections' in batchNMS: detectionOut.addAttr('keep_top_k', int(batchNMS['max_total_detections'][0])) else: detectionOut.addAttr('keep_top_k', 100) detectionOut.addAttr('code_type', "CENTER_SIZE") graph_def.node.extend([detectionOut]) while True: unconnectedNodes = getUnconnectedNodes() unconnectedNodes.remove(detectionOut.name) if not unconnectedNodes: break for name in unconnectedNodes: for i in range(len(graph_def.node)): if graph_def.node[i].name == name: del graph_def.node[i] break # Save as text. graph_def.save(outputPath) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run this script to get a text graph of ' 'SSD model from TensorFlow Object Detection API. ' 'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.') parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.') parser.add_argument('--output', required=True, help='Path to output text graph.') parser.add_argument('--config', required=True, help='Path to a *.config file is used for training.') args = parser.parse_args() createSSDGraph(args.input, args.config, args.output)