#include "autocalib.hpp" #include "util.hpp" using namespace std; using namespace cv; void focalsFromHomography(const Mat& H, double &f0, double &f1, bool &f0_ok, bool &f1_ok) { CV_Assert(H.type() == CV_64F && H.size() == Size(3, 3)); const double h[9] = { H.at(0, 0), H.at(0, 1), H.at(0, 2), H.at(1, 0), H.at(1, 1), H.at(1, 2), H.at(2, 0), H.at(2, 1), H.at(2, 2) }; f1_ok = true; double denom1 = h[6] * h[7]; double denom2 = (h[7] - h[6]) * (h[7] + h[6]); if (max(abs(denom1), abs(denom2)) < 1e-5) f1_ok = false; else { double val1 = -(h[0] * h[1] + h[3] * h[4]) / denom1; double val2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / denom2; if (val1 < val2) swap(val1, val2); if (val1 > 0 && val2 > 0) f1 = sqrt(abs(denom1) > abs(denom2) ? val1 : val2); else if (val1 > 0) f1 = sqrt(val1); else f1_ok = false; } f0_ok = true; denom1 = h[0] * h[3] + h[1] * h[4]; denom2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4]; if (max(abs(denom1), abs(denom2)) < 1e-5) f0_ok = false; else { double val1 = -h[2] * h[5] / denom1; double val2 = (h[5] * h[5] - h[2] * h[2]) / denom2; if (val1 < val2) swap(val1, val2); if (val1 > 0 && val2 > 0) f0 = sqrt(abs(denom1) > abs(denom2) ? val1 : val2); else if (val1 > 0) f0 = sqrt(val1); else f0_ok = false; } } bool focalsFromFundamental(const Mat &F, double &f0, double &f1) { CV_Assert(F.type() == CV_64F); CV_Assert(F.size() == Size(3, 3)); Mat Ft = F.t(); Mat k = Mat::zeros(3, 1, CV_64F); k.at(2, 0) = 1.f; // 1. Compute quantities double a = normL2sq(F*Ft*k) / normL2sq(Ft*k); double b = normL2sq(Ft*F*k) / normL2sq(F*k); double c = sqr(k.dot(F*k)) / (normL2sq(Ft*k) * normL2sq(F*k)); double d = k.dot(F*Ft*F*k) / k.dot(F*k); double A = 1/c + a - 2*d; double B = 1/c + b - 2*d; double P = 2*(1/c - 2*d + 0.5*normL2sq(F)); double Q = -(A + B)/c + 0.5*(normL2sq(F*Ft) - 0.5*sqr(normL2sq(F))); // 2. Solve quadratic equation Z*Z*a_ + Z*b_ + c_ = 0 double a_ = 1 + c*P; double b_ = -(c*P*P + 2*P + 4*c*Q); double c_ = P*P + 4*c*P*Q + 12*A*B; double D = b_*b_ - 4*a_*c_; if (abs(D) < 1e-5) D = 0; else if (D < 0) return false; double D_sqrt = sqrt(D); double Z0 = (-b_ - D_sqrt) / (2*a_); double Z1 = (-b_ + D_sqrt) / (2*a_); // 3. Choose solution double w0 = abs(Z0*Z0*Z0 - 3*P*Z0*Z0 + 2*(P*P + 2*Q)*Z0 - 4*(P*Q + 4*A*B/c)); double w1 = abs(Z1*Z1*Z1 - 3*P*Z1*Z1 + 2*(P*P + 2*Q)*Z1 - 4*(P*Q + 4*A*B/c)); double Z = Z0; if (w1 < w0) Z = Z1; // 4. double X = -1/c*(1 + 2*B/(Z - P)); double Y = -1/c*(1 + 2*A/(Z - P)); // 5. Compute focal lengths f0 = 1/sqrt(1 + X/normL2sq(Ft*k)); f1 = 1/sqrt(1 + Y/normL2sq(F*k)); return true; }