#include "clapack.h" /* Subroutine */ int slassq_(integer *n, real *x, integer *incx, real *scale, real *sumsq) { /* System generated locals */ integer i__1, i__2; real r__1; /* Local variables */ integer ix; real absxi; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLASSQ returns the values scl and smsq such that */ /* ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, */ /* where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is */ /* assumed to be non-negative and scl returns the value */ /* scl = max( scale, abs( x( i ) ) ). */ /* scale and sumsq must be supplied in SCALE and SUMSQ and */ /* scl and smsq are overwritten on SCALE and SUMSQ respectively. */ /* The routine makes only one pass through the vector x. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of elements to be used from the vector X. */ /* X (input) REAL array, dimension (N) */ /* The vector for which a scaled sum of squares is computed. */ /* x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. */ /* INCX (input) INTEGER */ /* The increment between successive values of the vector X. */ /* INCX > 0. */ /* SCALE (input/output) REAL */ /* On entry, the value scale in the equation above. */ /* On exit, SCALE is overwritten with scl , the scaling factor */ /* for the sum of squares. */ /* SUMSQ (input/output) REAL */ /* On entry, the value sumsq in the equation above. */ /* On exit, SUMSQ is overwritten with smsq , the basic sum of */ /* squares from which scl has been factored out. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --x; /* Function Body */ if (*n > 0) { i__1 = (*n - 1) * *incx + 1; i__2 = *incx; for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) { if (x[ix] != 0.f) { absxi = (r__1 = x[ix], dabs(r__1)); if (*scale < absxi) { /* Computing 2nd power */ r__1 = *scale / absxi; *sumsq = *sumsq * (r__1 * r__1) + 1; *scale = absxi; } else { /* Computing 2nd power */ r__1 = absxi / *scale; *sumsq += r__1 * r__1; } } /* L10: */ } } return 0; /* End of SLASSQ */ } /* slassq_ */