#include "clapack.h" /* Subroutine */ int slarrc_(char *jobt, integer *n, real *vl, real *vu, real *d__, real *e, real *pivmin, integer *eigcnt, integer *lcnt, integer * rcnt, integer *info) { /* System generated locals */ integer i__1; real r__1; /* Local variables */ integer i__; real sl, su, tmp, tmp2; logical matt; extern logical lsame_(char *, char *); real lpivot, rpivot; /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* Find the number of eigenvalues of the symmetric tridiagonal matrix T */ /* that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T */ /* if JOBT = 'L'. */ /* Arguments */ /* ========= */ /* JOBT (input) CHARACTER*1 */ /* = 'T': Compute Sturm count for matrix T. */ /* = 'L': Compute Sturm count for matrix L D L^T. */ /* N (input) INTEGER */ /* The order of the matrix. N > 0. */ /* VL (input) DOUBLE PRECISION */ /* VU (input) DOUBLE PRECISION */ /* The lower and upper bounds for the eigenvalues. */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* JOBT = 'T': The N diagonal elements of the tridiagonal matrix T. */ /* JOBT = 'L': The N diagonal elements of the diagonal matrix D. */ /* E (input) DOUBLE PRECISION array, dimension (N) */ /* JOBT = 'T': The N-1 offdiagonal elements of the matrix T. */ /* JOBT = 'L': The N-1 offdiagonal elements of the matrix L. */ /* PIVMIN (input) DOUBLE PRECISION */ /* The minimum pivot in the Sturm sequence for T. */ /* EIGCNT (output) INTEGER */ /* The number of eigenvalues of the symmetric tridiagonal matrix T */ /* that are in the interval (VL,VU] */ /* LCNT (output) INTEGER */ /* RCNT (output) INTEGER */ /* The left and right negcounts of the interval. */ /* INFO (output) INTEGER */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Beresford Parlett, University of California, Berkeley, USA */ /* Jim Demmel, University of California, Berkeley, USA */ /* Inderjit Dhillon, University of Texas, Austin, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* Christof Voemel, University of California, Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --e; --d__; /* Function Body */ *info = 0; *lcnt = 0; *rcnt = 0; *eigcnt = 0; matt = lsame_(jobt, "T"); if (matt) { /* Sturm sequence count on T */ lpivot = d__[1] - *vl; rpivot = d__[1] - *vu; if (lpivot <= 0.f) { ++(*lcnt); } if (rpivot <= 0.f) { ++(*rcnt); } i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing 2nd power */ r__1 = e[i__]; tmp = r__1 * r__1; lpivot = d__[i__ + 1] - *vl - tmp / lpivot; rpivot = d__[i__ + 1] - *vu - tmp / rpivot; if (lpivot <= 0.f) { ++(*lcnt); } if (rpivot <= 0.f) { ++(*rcnt); } /* L10: */ } } else { /* Sturm sequence count on L D L^T */ sl = -(*vl); su = -(*vu); i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { lpivot = d__[i__] + sl; rpivot = d__[i__] + su; if (lpivot <= 0.f) { ++(*lcnt); } if (rpivot <= 0.f) { ++(*rcnt); } tmp = e[i__] * d__[i__] * e[i__]; tmp2 = tmp / lpivot; if (tmp2 == 0.f) { sl = tmp - *vl; } else { sl = sl * tmp2 - *vl; } tmp2 = tmp / rpivot; if (tmp2 == 0.f) { su = tmp - *vu; } else { su = su * tmp2 - *vu; } /* L20: */ } lpivot = d__[*n] + sl; rpivot = d__[*n] + su; if (lpivot <= 0.f) { ++(*lcnt); } if (rpivot <= 0.f) { ++(*rcnt); } } *eigcnt = *rcnt - *lcnt; return 0; /* end of SLARRC */ } /* slarrc_ */