// DaSiamRPN tracker. // Original paper: https://arxiv.org/abs/1808.06048 // Link to original repo: https://github.com/foolwood/DaSiamRPN // Links to onnx models: // - network: https://www.dropbox.com/s/rr1lk9355vzolqv/dasiamrpn_model.onnx?dl=0 // - kernel_r1: https://www.dropbox.com/s/999cqx5zrfi7w4p/dasiamrpn_kernel_r1.onnx?dl=0 // - kernel_cls1: https://www.dropbox.com/s/qvmtszx5h339a0w/dasiamrpn_kernel_cls1.onnx?dl=0 #include #include #include #include #include using namespace cv; using namespace cv::dnn; const char *keys = "{ help h | | Print help message }" "{ input i | | Full path to input video folder, the specific camera index. (empty for camera 0) }" "{ net | dasiamrpn_model.onnx | Path to onnx model of net}" "{ kernel_cls1 | dasiamrpn_kernel_cls1.onnx | Path to onnx model of kernel_r1 }" "{ kernel_r1 | dasiamrpn_kernel_r1.onnx | Path to onnx model of kernel_cls1 }" "{ backend | 0 | Choose one of computation backends: " "0: automatically (by default), " "1: Halide language (http://halide-lang.org/), " "2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "3: OpenCV implementation }" "{ target | 0 | Choose one of target computation devices: " "0: CPU target (by default), " "1: OpenCL, " "2: OpenCL fp16 (half-float precision), " "3: VPU }" ; // Initial parameters of the model struct trackerConfig { float windowInfluence = 0.43f; float lr = 0.4f; int scale = 8; bool swapRB = false; int totalStride = 8; float penaltyK = 0.055f; int exemplarSize = 127; int instanceSize = 271; float contextAmount = 0.5f; std::vector ratios = { 0.33f, 0.5f, 1.0f, 2.0f, 3.0f }; int anchorNum = int(ratios.size()); Mat anchors; Mat windows; Scalar avgChans; Size imgSize = { 0, 0 }; Rect2f targetBox = { 0, 0, 0, 0 }; int scoreSize = (instanceSize - exemplarSize) / totalStride + 1; void update_scoreSize() { scoreSize = int((instanceSize - exemplarSize) / totalStride + 1); } }; static void softmax(const Mat& src, Mat& dst); static void elementMax(Mat& src); static Mat generateHanningWindow(const trackerConfig& trackState); static Mat generateAnchors(trackerConfig& trackState); static Mat getSubwindow(Mat& img, const Rect2f& targetBox, float originalSize, Scalar avgChans); static float trackerEval(Mat img, trackerConfig& trackState, Net& siamRPN); static void trackerInit(Mat img, trackerConfig& trackState, Net& siamRPN, Net& siamKernelR1, Net& siamKernelCL1); template static T sizeCal(const T& w, const T& h) { T pad = (w + h) * T(0.5); T sz2 = (w + pad) * (h + pad); return sqrt(sz2); } template <> Mat sizeCal(const Mat& w, const Mat& h) { Mat pad = (w + h) * 0.5; Mat sz2 = (w + pad).mul((h + pad)); cv::sqrt(sz2, sz2); return sz2; } static int run(int argc, char** argv) { // Parse command line arguments. CommandLineParser parser(argc, argv, keys); if (parser.has("help")) { parser.printMessage(); return 0; } std::string inputName = parser.get("input"); std::string net = parser.get("net"); std::string kernel_cls1 = parser.get("kernel_cls1"); std::string kernel_r1 = parser.get("kernel_r1"); int backend = parser.get("backend"); int target = parser.get("target"); // Read nets. Net siamRPN, siamKernelCL1, siamKernelR1; try { siamRPN = readNet(samples::findFile(net)); siamKernelCL1 = readNet(samples::findFile(kernel_cls1)); siamKernelR1 = readNet(samples::findFile(kernel_r1)); } catch (const cv::Exception& ee) { std::cerr << "Exception: " << ee.what() << std::endl; std::cout << "Can't load the network by using the following files:" << std::endl; std::cout << "siamRPN : " << net << std::endl; std::cout << "siamKernelCL1 : " << kernel_cls1 << std::endl; std::cout << "siamKernelR1 : " << kernel_r1 << std::endl; return 2; } // Set model backend. siamRPN.setPreferableBackend(backend); siamRPN.setPreferableTarget(target); siamKernelR1.setPreferableBackend(backend); siamKernelR1.setPreferableTarget(target); siamKernelCL1.setPreferableBackend(backend); siamKernelCL1.setPreferableTarget(target); const std::string winName = "DaSiamRPN"; namedWindow(winName, WINDOW_AUTOSIZE); // Open a video file or an image file or a camera stream. VideoCapture cap; if (inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1)) { int c = inputName.empty() ? 0 : inputName[0] - '0'; std::cout << "Trying to open camera #" << c << " ..." << std::endl; if (!cap.open(c)) { std::cout << "Capture from camera #" << c << " didn't work. Specify -i=