/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Jin Ma, jin@multicorewareinc.com // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels.hpp" using namespace cv; using namespace cv::ocl; cv::ocl::OpticalFlowDual_TVL1_OCL::OpticalFlowDual_TVL1_OCL() { tau = 0.25; lambda = 0.15; theta = 0.3; nscales = 5; warps = 5; epsilon = 0.01; iterations = 300; useInitialFlow = false; } void cv::ocl::OpticalFlowDual_TVL1_OCL::operator()(const oclMat& I0, const oclMat& I1, oclMat& flowx, oclMat& flowy) { CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 ); CV_Assert( I0.size() == I1.size() ); CV_Assert( I0.type() == I1.type() ); CV_Assert( !useInitialFlow || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) ); CV_Assert( nscales > 0 ); // allocate memory for the pyramid structure I0s.resize(nscales); I1s.resize(nscales); u1s.resize(nscales); u2s.resize(nscales); //I0s_step == I1s_step I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0); I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0); if (!useInitialFlow) { flowx.create(I0.size(), CV_32FC1); flowy.create(I0.size(), CV_32FC1); } //u1s_step != u2s_step u1s[0] = flowx; u2s[0] = flowy; I1x_buf.create(I0.size(), CV_32FC1); I1y_buf.create(I0.size(), CV_32FC1); I1w_buf.create(I0.size(), CV_32FC1); I1wx_buf.create(I0.size(), CV_32FC1); I1wy_buf.create(I0.size(), CV_32FC1); grad_buf.create(I0.size(), CV_32FC1); rho_c_buf.create(I0.size(), CV_32FC1); p11_buf.create(I0.size(), CV_32FC1); p12_buf.create(I0.size(), CV_32FC1); p21_buf.create(I0.size(), CV_32FC1); p22_buf.create(I0.size(), CV_32FC1); diff_buf.create(I0.size(), CV_32FC1); // create the scales for (int s = 1; s < nscales; ++s) { ocl::pyrDown(I0s[s - 1], I0s[s]); ocl::pyrDown(I1s[s - 1], I1s[s]); if (I0s[s].cols < 16 || I0s[s].rows < 16) { nscales = s; break; } if (useInitialFlow) { ocl::pyrDown(u1s[s - 1], u1s[s]); ocl::pyrDown(u2s[s - 1], u2s[s]); ocl::multiply(0.5, u1s[s], u1s[s]); ocl::multiply(0.5, u2s[s], u2s[s]); } } // pyramidal structure for computing the optical flow for (int s = nscales - 1; s >= 0; --s) { // compute the optical flow at the current scale procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]); // if this was the last scale, finish now if (s == 0) break; // otherwise, upsample the optical flow // zoom the optical flow for the next finer scale ocl::resize(u1s[s], u1s[s - 1], I0s[s - 1].size()); ocl::resize(u2s[s], u2s[s - 1], I0s[s - 1].size()); // scale the optical flow with the appropriate zoom factor multiply(2, u1s[s - 1], u1s[s - 1]); multiply(2, u2s[s - 1], u2s[s - 1]); } } namespace ocl_tvl1flow { void centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy); void warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x, oclMat &I1y, oclMat &u1, oclMat &u2, oclMat &I1w, oclMat &I1wx, oclMat &I1wy, oclMat &grad, oclMat &rho); void estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad, oclMat &rho_c, oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, oclMat &u1, oclMat &u2, oclMat &error, float l_t, float theta, char calc_error); void estimateDualVariables(oclMat &u1, oclMat &u2, oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, float taut); } void cv::ocl::OpticalFlowDual_TVL1_OCL::procOneScale(const oclMat &I0, const oclMat &I1, oclMat &u1, oclMat &u2) { using namespace ocl_tvl1flow; const double scaledEpsilon = epsilon * epsilon * I0.size().area(); CV_DbgAssert( I1.size() == I0.size() ); CV_DbgAssert( I1.type() == I0.type() ); CV_DbgAssert( u1.empty() || u1.size() == I0.size() ); CV_DbgAssert( u2.size() == u1.size() ); if (u1.empty()) { u1.create(I0.size(), CV_32FC1); u1.setTo(Scalar::all(0)); u2.create(I0.size(), CV_32FC1); u2.setTo(Scalar::all(0)); } oclMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows)); oclMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows)); centeredGradient(I1, I1x, I1y); oclMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows)); oclMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows)); oclMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows)); oclMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows)); oclMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows)); oclMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows)); oclMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows)); oclMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows)); oclMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows)); p11.setTo(Scalar::all(0)); p12.setTo(Scalar::all(0)); p21.setTo(Scalar::all(0)); p22.setTo(Scalar::all(0)); oclMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows)); const float l_t = static_cast(lambda * theta); const float taut = static_cast(tau / theta); for (int warpings = 0; warpings < warps; ++warpings) { warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c); double error = std::numeric_limits::max(); double prev_error = 0; for (int n = 0; error > scaledEpsilon && n < iterations; ++n) { // some tweaks to make sum operation less frequently char calc_error = (n & 0x1) && (prev_error < scaledEpsilon); estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, diff, l_t, static_cast(theta), calc_error); if(calc_error) { error = ocl::sum(diff)[0]; prev_error = error; } else { error = std::numeric_limits::max(); prev_error -= scaledEpsilon; } estimateDualVariables(u1, u2, p11, p12, p21, p22, taut); } } } void cv::ocl::OpticalFlowDual_TVL1_OCL::collectGarbage() { I0s.clear(); I1s.clear(); u1s.clear(); u2s.clear(); I1x_buf.release(); I1y_buf.release(); I1w_buf.release(); I1wx_buf.release(); I1wy_buf.release(); grad_buf.release(); rho_c_buf.release(); p11_buf.release(); p12_buf.release(); p21_buf.release(); p22_buf.release(); diff_buf.release(); norm_buf.release(); } void ocl_tvl1flow::centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy) { Context *clCxt = src.clCxt; size_t localThreads[3] = {32, 8, 1}; size_t globalThreads[3] = {src.cols, src.rows, 1}; int srcElementSize = src.elemSize(); int src_step = src.step/srcElementSize; int dElememntSize = dx.elemSize(); int dx_step = dx.step/dElememntSize; String kernelName = "centeredGradientKernel"; std::vector< std::pair > args; args.push_back( std::make_pair( sizeof(cl_mem), (void*)&src.data)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&src.cols)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&src.rows)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&src_step)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&dx.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&dy.data)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&dx_step)); openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThreads, localThreads, args, -1, -1); } void ocl_tvl1flow::estimateDualVariables(oclMat &u1, oclMat &u2, oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, float taut) { Context *clCxt = u1.clCxt; size_t localThread[] = {32, 8, 1}; size_t globalThread[] = { u1.cols, u1.rows, 1 }; int u1_element_size = u1.elemSize(); int u1_step = u1.step/u1_element_size; int u2_element_size = u2.elemSize(); int u2_step = u2.step/u2_element_size; int p11_element_size = p11.elemSize(); int p11_step = p11.step/p11_element_size; int u1_offset_y = u1.offset/u1.step; int u1_offset_x = u1.offset%u1.step; u1_offset_x = u1_offset_x/u1.elemSize(); int u2_offset_y = u2.offset/u2.step; int u2_offset_x = u2.offset%u2.step; u2_offset_x = u2_offset_x/u2.elemSize(); String kernelName = "estimateDualVariablesKernel"; std::vector< std::pair > args; args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u1.data)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1.cols)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1.rows)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_step)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u2.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p11.data)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&p11_step)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p12.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p21.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p22.data)); args.push_back( std::make_pair( sizeof(cl_float), (void*)&taut)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_step)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_x)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_y)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_x)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_y)); openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1); } void ocl_tvl1flow::estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad, oclMat &rho_c, oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, oclMat &u1, oclMat &u2, oclMat &error, float l_t, float theta, char calc_error) { Context* clCxt = I1wx.clCxt; size_t localThread[] = {32, 8, 1}; size_t globalThread[] = { I1wx.cols, I1wx.rows, 1 }; int I1wx_element_size = I1wx.elemSize(); int I1wx_step = I1wx.step/I1wx_element_size; int u1_element_size = u1.elemSize(); int u1_step = u1.step/u1_element_size; int u2_element_size = u2.elemSize(); int u2_step = u2.step/u2_element_size; int u1_offset_y = u1.offset/u1.step; int u1_offset_x = u1.offset%u1.step; u1_offset_x = u1_offset_x/u1.elemSize(); int u2_offset_y = u2.offset/u2.step; int u2_offset_x = u2.offset%u2.step; u2_offset_x = u2_offset_x/u2.elemSize(); String kernelName = "estimateUKernel"; std::vector< std::pair > args; args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1wx.data)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&I1wx.cols)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&I1wx.rows)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&I1wx_step)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1wy.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&grad.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&rho_c.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p11.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p12.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p21.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p22.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u1.data)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_step)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u2.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&error.data)); args.push_back( std::make_pair( sizeof(cl_float), (void*)&l_t)); args.push_back( std::make_pair( sizeof(cl_float), (void*)&theta)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_step)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_x)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_y)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_x)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_y)); args.push_back( std::make_pair( sizeof(cl_char), (void*)&calc_error)); openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1); } void ocl_tvl1flow::warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x, oclMat &I1y, oclMat &u1, oclMat &u2, oclMat &I1w, oclMat &I1wx, oclMat &I1wy, oclMat &grad, oclMat &rho) { Context* clCxt = I0.clCxt; int u1ElementSize = u1.elemSize(); int u1Step = u1.step/u1ElementSize; int u2ElementSize = u2.elemSize(); int u2Step = u2.step/u2ElementSize; int I0ElementSize = I0.elemSize(); int I0Step = I0.step/I0ElementSize; int I1w_element_size = I1w.elemSize(); int I1w_step = I1w.step/I1w_element_size; int u1_offset_y = u1.offset/u1.step; int u1_offset_x = u1.offset%u1.step; u1_offset_x = u1_offset_x/u1.elemSize(); int u2_offset_y = u2.offset/u2.step; int u2_offset_x = u2.offset%u2.step; u2_offset_x = u2_offset_x/u2.elemSize(); size_t localThread[] = {32, 8, 1}; size_t globalThread[] = { I0.cols, I0.rows, 1 }; cl_mem I1_tex; cl_mem I1x_tex; cl_mem I1y_tex; I1_tex = bindTexture(I1); I1x_tex = bindTexture(I1x); I1y_tex = bindTexture(I1y); String kernelName = "warpBackwardKernel"; std::vector< std::pair > args; args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I0.data)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&I0Step)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&I0.cols)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&I0.rows)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1_tex)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1x_tex)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1y_tex)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u1.data)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1Step)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u2.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1w.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1wx.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1wy.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&grad.data)); args.push_back( std::make_pair( sizeof(cl_mem), (void*)&rho.data)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&I1w_step)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2Step)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_x)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_y)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_x)); args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_y)); openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1); releaseTexture(I1_tex); releaseTexture(I1x_tex); releaseTexture(I1y_tex); }