/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "perf_precomp.hpp" using namespace std; using namespace testing; using namespace perf; ////////////////////////////////////////////////////////////////////// // Remap enum { HALF_SIZE=0, UPSIDE_DOWN, REFLECTION_X, REFLECTION_BOTH }; CV_ENUM(RemapMode, HALF_SIZE, UPSIDE_DOWN, REFLECTION_X, REFLECTION_BOTH); void generateMap(cv::Mat& map_x, cv::Mat& map_y, int remapMode) { for (int j = 0; j < map_x.rows; ++j) { for (int i = 0; i < map_x.cols; ++i) { switch (remapMode) { case HALF_SIZE: if (i > map_x.cols*0.25 && i < map_x.cols*0.75 && j > map_x.rows*0.25 && j < map_x.rows*0.75) { map_x.at(j,i) = 2.f * (i - map_x.cols * 0.25f) + 0.5f; map_y.at(j,i) = 2.f * (j - map_x.rows * 0.25f) + 0.5f; } else { map_x.at(j,i) = 0.f; map_y.at(j,i) = 0.f; } break; case UPSIDE_DOWN: map_x.at(j,i) = static_cast(i); map_y.at(j,i) = static_cast(map_x.rows - j); break; case REFLECTION_X: map_x.at(j,i) = static_cast(map_x.cols - i); map_y.at(j,i) = static_cast(j); break; case REFLECTION_BOTH: map_x.at(j,i) = static_cast(map_x.cols - i); map_y.at(j,i) = static_cast(map_x.rows - j); break; } // end of switch } } } DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Border_Mode, cv::Size, MatDepth, MatCn, Interpolation, BorderMode, RemapMode); PERF_TEST_P(Sz_Depth_Cn_Inter_Border_Mode, ImgProc_Remap, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4, Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), ALL_BORDER_MODES, RemapMode::all())) { declare.time(20.0); const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int interpolation = GET_PARAM(3); const int borderMode = GET_PARAM(4); const int remapMode = GET_PARAM(5); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); cv::Mat xmap(size, CV_32FC1); cv::Mat ymap(size, CV_32FC1); generateMap(xmap, ymap, remapMode); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); const cv::gpu::GpuMat d_xmap(xmap); const cv::gpu::GpuMat d_ymap(ymap); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::remap(d_src, dst, d_xmap, d_ymap, interpolation, borderMode); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::remap(src, dst, xmap, ymap, interpolation, borderMode); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // Resize DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Scale, cv::Size, MatDepth, MatCn, Interpolation, double); PERF_TEST_P(Sz_Depth_Cn_Inter_Scale, ImgProc_Resize, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4, Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), Values(0.5, 0.3, 2.0))) { declare.time(20.0); const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int interpolation = GET_PARAM(3); const double f = GET_PARAM(4); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::resize(d_src, dst, cv::Size(), f, f, interpolation); GPU_SANITY_CHECK(dst, 1e-3, ERROR_RELATIVE); } else { cv::Mat dst; TEST_CYCLE() cv::resize(src, dst, cv::Size(), f, f, interpolation); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // ResizeArea DEF_PARAM_TEST(Sz_Depth_Cn_Scale, cv::Size, MatDepth, MatCn, double); PERF_TEST_P(Sz_Depth_Cn_Scale, ImgProc_ResizeArea, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4, Values(0.2, 0.1, 0.05))) { declare.time(1.0); const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int interpolation = cv::INTER_AREA; const double f = GET_PARAM(3); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::resize(d_src, dst, cv::Size(), f, f, interpolation); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::resize(src, dst, cv::Size(), f, f, interpolation); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // WarpAffine DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Border, cv::Size, MatDepth, MatCn, Interpolation, BorderMode); PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpAffine, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4, Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), ALL_BORDER_MODES)) { declare.time(20.0); const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int interpolation = GET_PARAM(3); const int borderMode = GET_PARAM(4); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); const double aplha = CV_PI / 4; const double mat[2 * 3] = { std::cos(aplha), -std::sin(aplha), src.cols / 2, std::sin(aplha), std::cos(aplha), 0 }; const cv::Mat M(2, 3, CV_64F, (void*) mat); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::warpAffine(d_src, dst, M, size, interpolation, borderMode); GPU_SANITY_CHECK(dst, 1); } else { cv::Mat dst; TEST_CYCLE() cv::warpAffine(src, dst, M, size, interpolation, borderMode); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // WarpPerspective PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpPerspective, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4, Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), ALL_BORDER_MODES)) { declare.time(20.0); const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int interpolation = GET_PARAM(3); const int borderMode = GET_PARAM(4); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); const double aplha = CV_PI / 4; double mat[3][3] = { {std::cos(aplha), -std::sin(aplha), src.cols / 2}, {std::sin(aplha), std::cos(aplha), 0}, {0.0, 0.0, 1.0}}; const cv::Mat M(3, 3, CV_64F, (void*) mat); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::warpPerspective(d_src, dst, M, size, interpolation, borderMode); GPU_SANITY_CHECK(dst, 1); } else { cv::Mat dst; TEST_CYCLE() cv::warpPerspective(src, dst, M, size, interpolation, borderMode); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // CopyMakeBorder DEF_PARAM_TEST(Sz_Depth_Cn_Border, cv::Size, MatDepth, MatCn, BorderMode); PERF_TEST_P(Sz_Depth_Cn_Border, ImgProc_CopyMakeBorder, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4, ALL_BORDER_MODES)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int borderMode = GET_PARAM(3); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::copyMakeBorder(d_src, dst, 5, 5, 5, 5, borderMode); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::copyMakeBorder(src, dst, 5, 5, 5, 5, borderMode); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // Threshold CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV) DEF_PARAM_TEST(Sz_Depth_Op, cv::Size, MatDepth, ThreshOp); PERF_TEST_P(Sz_Depth_Op, ImgProc_Threshold, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), ThreshOp::all())) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int threshOp = GET_PARAM(2); cv::Mat src(size, depth); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::threshold(d_src, dst, 100.0, 255.0, threshOp); GPU_SANITY_CHECK(dst, 1e-10); } else { cv::Mat dst; TEST_CYCLE() cv::threshold(src, dst, 100.0, 255.0, threshOp); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // Integral PERF_TEST_P(Sz, ImgProc_Integral, GPU_TYPICAL_MAT_SIZES) { const cv::Size size = GetParam(); cv::Mat src(size, CV_8UC1); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; cv::gpu::GpuMat d_buf; TEST_CYCLE() cv::gpu::integralBuffered(d_src, dst, d_buf); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::integral(src, dst); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // IntegralSqr PERF_TEST_P(Sz, ImgProc_IntegralSqr, GPU_TYPICAL_MAT_SIZES) { const cv::Size size = GetParam(); cv::Mat src(size, CV_8UC1); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::sqrIntegral(d_src, dst); GPU_SANITY_CHECK(dst); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // HistEvenC1 PERF_TEST_P(Sz_Depth, ImgProc_HistEvenC1, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_16S))) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); cv::Mat src(size, depth); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; cv::gpu::GpuMat d_buf; TEST_CYCLE() cv::gpu::histEven(d_src, dst, d_buf, 30, 0, 180); GPU_SANITY_CHECK(dst); } else { const int hbins = 30; const float hranges[] = {0.0f, 180.0f}; const int histSize[] = {hbins}; const float* ranges[] = {hranges}; const int channels[] = {0}; cv::Mat dst; TEST_CYCLE() cv::calcHist(&src, 1, channels, cv::Mat(), dst, 1, histSize, ranges); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // HistEvenC4 PERF_TEST_P(Sz_Depth, ImgProc_HistEvenC4, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_16S))) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); cv::Mat src(size, CV_MAKE_TYPE(depth, 4)); declare.in(src, WARMUP_RNG); int histSize[] = {30, 30, 30, 30}; int lowerLevel[] = {0, 0, 0, 0}; int upperLevel[] = {180, 180, 180, 180}; if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat d_hist[4]; cv::gpu::GpuMat d_buf; TEST_CYCLE() cv::gpu::histEven(d_src, d_hist, d_buf, histSize, lowerLevel, upperLevel); cv::Mat cpu_hist0, cpu_hist1, cpu_hist2, cpu_hist3; d_hist[0].download(cpu_hist0); d_hist[1].download(cpu_hist1); d_hist[2].download(cpu_hist2); d_hist[3].download(cpu_hist3); SANITY_CHECK(cpu_hist0); SANITY_CHECK(cpu_hist1); SANITY_CHECK(cpu_hist2); SANITY_CHECK(cpu_hist3); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // CalcHist PERF_TEST_P(Sz, ImgProc_CalcHist, GPU_TYPICAL_MAT_SIZES) { const cv::Size size = GetParam(); cv::Mat src(size, CV_8UC1); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::calcHist(d_src, dst); GPU_SANITY_CHECK(dst); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // EqualizeHist PERF_TEST_P(Sz, ImgProc_EqualizeHist, GPU_TYPICAL_MAT_SIZES) { const cv::Size size = GetParam(); cv::Mat src(size, CV_8UC1); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; cv::gpu::GpuMat d_hist; cv::gpu::GpuMat d_buf; TEST_CYCLE() cv::gpu::equalizeHist(d_src, dst, d_hist, d_buf); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::equalizeHist(src, dst); CPU_SANITY_CHECK(dst); } } DEF_PARAM_TEST(Sz_ClipLimit, cv::Size, double); PERF_TEST_P(Sz_ClipLimit, ImgProc_CLAHE, Combine(GPU_TYPICAL_MAT_SIZES, Values(0.0, 40.0))) { const cv::Size size = GET_PARAM(0); const double clipLimit = GET_PARAM(1); cv::Mat src(size, CV_8UC1); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { cv::Ptr clahe = cv::gpu::createCLAHE(clipLimit); cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() clahe->apply(d_src, dst); GPU_SANITY_CHECK(dst); } else { cv::Ptr clahe = cv::createCLAHE(clipLimit); cv::Mat dst; TEST_CYCLE() clahe->apply(src, dst); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // ColumnSum PERF_TEST_P(Sz, ImgProc_ColumnSum, GPU_TYPICAL_MAT_SIZES) { const cv::Size size = GetParam(); cv::Mat src(size, CV_32FC1); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::columnSum(d_src, dst); GPU_SANITY_CHECK(dst); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // Canny DEF_PARAM_TEST(Image_AppertureSz_L2gradient, string, int, bool); PERF_TEST_P(Image_AppertureSz_L2gradient, ImgProc_Canny, Combine(Values("perf/800x600.png", "perf/1280x1024.png", "perf/1680x1050.png"), Values(3, 5), Bool())) { const string fileName = GET_PARAM(0); const int apperture_size = GET_PARAM(1); const bool useL2gradient = GET_PARAM(2); const cv::Mat image = readImage(fileName, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(image.empty()); const double low_thresh = 50.0; const double high_thresh = 100.0; if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_image(image); cv::gpu::GpuMat dst; cv::gpu::CannyBuf d_buf; TEST_CYCLE() cv::gpu::Canny(d_image, d_buf, dst, low_thresh, high_thresh, apperture_size, useL2gradient); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::Canny(image, dst, low_thresh, high_thresh, apperture_size, useL2gradient); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // MeanShiftFiltering DEF_PARAM_TEST_1(Image, string); PERF_TEST_P(Image, ImgProc_MeanShiftFiltering, Values("gpu/meanshift/cones.png")) { declare.time(300.0); const cv::Mat img = readImage(GetParam()); ASSERT_FALSE(img.empty()); cv::Mat rgba; cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); const int sp = 50; const int sr = 50; if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(rgba); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::meanShiftFiltering(d_src, dst, sp, sr); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::pyrMeanShiftFiltering(img, dst, sp, sr); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // MeanShiftProc PERF_TEST_P(Image, ImgProc_MeanShiftProc, Values("gpu/meanshift/cones.png")) { declare.time(300.0); const cv::Mat img = readImage(GetParam()); ASSERT_FALSE(img.empty()); cv::Mat rgba; cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); const int sp = 50; const int sr = 50; if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(rgba); cv::gpu::GpuMat dstr; cv::gpu::GpuMat dstsp; TEST_CYCLE() cv::gpu::meanShiftProc(d_src, dstr, dstsp, sp, sr); GPU_SANITY_CHECK(dstr); GPU_SANITY_CHECK(dstsp); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // MeanShiftSegmentation PERF_TEST_P(Image, ImgProc_MeanShiftSegmentation, Values("gpu/meanshift/cones.png")) { declare.time(300.0); const cv::Mat img = readImage(GetParam()); ASSERT_FALSE(img.empty()); cv::Mat rgba; cv::cvtColor(img, rgba, cv::COLOR_BGR2BGRA); const int sp = 10; const int sr = 10; const int minsize = 20; if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(rgba); cv::Mat dst; TEST_CYCLE() cv::gpu::meanShiftSegmentation(d_src, dst, sp, sr, minsize); GPU_SANITY_CHECK(dst); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // BlendLinear PERF_TEST_P(Sz_Depth_Cn, ImgProc_BlendLinear, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_32F), GPU_CHANNELS_1_3_4)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat img1(size, type); cv::Mat img2(size, type); declare.in(img1, img2, WARMUP_RNG); const cv::Mat weights1(size, CV_32FC1, cv::Scalar::all(0.5)); const cv::Mat weights2(size, CV_32FC1, cv::Scalar::all(0.5)); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_img1(img1); const cv::gpu::GpuMat d_img2(img2); const cv::gpu::GpuMat d_weights1(weights1); const cv::gpu::GpuMat d_weights2(weights2); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::blendLinear(d_img1, d_img2, d_weights1, d_weights2, dst); GPU_SANITY_CHECK(dst); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // Convolve DEF_PARAM_TEST(Sz_KernelSz_Ccorr, cv::Size, int, bool); PERF_TEST_P(Sz_KernelSz_Ccorr, ImgProc_Convolve, Combine(GPU_TYPICAL_MAT_SIZES, Values(17, 27, 32, 64), Bool())) { declare.time(10.0); const cv::Size size = GET_PARAM(0); const int templ_size = GET_PARAM(1); const bool ccorr = GET_PARAM(2); const cv::Mat image(size, CV_32FC1); const cv::Mat templ(templ_size, templ_size, CV_32FC1); declare.in(image, templ, WARMUP_RNG); if (PERF_RUN_GPU()) { cv::gpu::GpuMat d_image = cv::gpu::createContinuous(size, CV_32FC1); d_image.upload(image); cv::gpu::GpuMat d_templ = cv::gpu::createContinuous(templ_size, templ_size, CV_32FC1); d_templ.upload(templ); cv::gpu::GpuMat dst; cv::gpu::ConvolveBuf d_buf; TEST_CYCLE() cv::gpu::convolve(d_image, d_templ, dst, ccorr, d_buf); GPU_SANITY_CHECK(dst); } else { if (ccorr) FAIL_NO_CPU(); cv::Mat dst; TEST_CYCLE() cv::filter2D(image, dst, image.depth(), templ); CPU_SANITY_CHECK(dst); } } //////////////////////////////////////////////////////////////////////////////// // MatchTemplate8U CV_ENUM(TemplateMethod, TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED) DEF_PARAM_TEST(Sz_TemplateSz_Cn_Method, cv::Size, cv::Size, MatCn, TemplateMethod); PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate8U, Combine(GPU_TYPICAL_MAT_SIZES, Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)), GPU_CHANNELS_1_3_4, TemplateMethod::all())) { declare.time(300.0); const cv::Size size = GET_PARAM(0); const cv::Size templ_size = GET_PARAM(1); const int cn = GET_PARAM(2); const int method = GET_PARAM(3); cv::Mat image(size, CV_MAKE_TYPE(CV_8U, cn)); cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_8U, cn)); declare.in(image, templ, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_image(image); const cv::gpu::GpuMat d_templ(templ); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::matchTemplate(d_image, d_templ, dst, method); GPU_SANITY_CHECK(dst, 1e-5, ERROR_RELATIVE); } else { cv::Mat dst; TEST_CYCLE() cv::matchTemplate(image, templ, dst, method); CPU_SANITY_CHECK(dst); } }; //////////////////////////////////////////////////////////////////////////////// // MatchTemplate32F PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate32F, Combine(GPU_TYPICAL_MAT_SIZES, Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)), GPU_CHANNELS_1_3_4, Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR)))) { declare.time(300.0); const cv::Size size = GET_PARAM(0); const cv::Size templ_size = GET_PARAM(1); const int cn = GET_PARAM(2); int method = GET_PARAM(3); cv::Mat image(size, CV_MAKE_TYPE(CV_32F, cn)); cv::Mat templ(templ_size, CV_MAKE_TYPE(CV_32F, cn)); declare.in(image, templ, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_image(image); const cv::gpu::GpuMat d_templ(templ); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::matchTemplate(d_image, d_templ, dst, method); GPU_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); } else { cv::Mat dst; TEST_CYCLE() cv::matchTemplate(image, templ, dst, method); CPU_SANITY_CHECK(dst); } }; ////////////////////////////////////////////////////////////////////// // MulSpectrums CV_FLAGS(DftFlags, 0, DFT_INVERSE, DFT_SCALE, DFT_ROWS, DFT_COMPLEX_OUTPUT, DFT_REAL_OUTPUT) DEF_PARAM_TEST(Sz_Flags, cv::Size, DftFlags); PERF_TEST_P(Sz_Flags, ImgProc_MulSpectrums, Combine(GPU_TYPICAL_MAT_SIZES, Values(0, DftFlags(cv::DFT_ROWS)))) { const cv::Size size = GET_PARAM(0); const int flag = GET_PARAM(1); cv::Mat a(size, CV_32FC2); cv::Mat b(size, CV_32FC2); declare.in(a, b, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_a(a); const cv::gpu::GpuMat d_b(b); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::mulSpectrums(d_a, d_b, dst, flag); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::mulSpectrums(a, b, dst, flag); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // MulAndScaleSpectrums PERF_TEST_P(Sz, ImgProc_MulAndScaleSpectrums, GPU_TYPICAL_MAT_SIZES) { const cv::Size size = GetParam(); const float scale = 1.f / size.area(); cv::Mat src1(size, CV_32FC2); cv::Mat src2(size, CV_32FC2); declare.in(src1,src2, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src1(src1); const cv::gpu::GpuMat d_src2(src2); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::mulAndScaleSpectrums(d_src1, d_src2, dst, cv::DFT_ROWS, scale, false); GPU_SANITY_CHECK(dst); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // Dft PERF_TEST_P(Sz_Flags, ImgProc_Dft, Combine(GPU_TYPICAL_MAT_SIZES, Values(0, DftFlags(cv::DFT_ROWS), DftFlags(cv::DFT_INVERSE)))) { declare.time(10.0); const cv::Size size = GET_PARAM(0); const int flag = GET_PARAM(1); cv::Mat src(size, CV_32FC2); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::dft(d_src, dst, size, flag); GPU_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); } else { cv::Mat dst; TEST_CYCLE() cv::dft(src, dst, flag); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // CornerHarris DEF_PARAM_TEST(Image_Type_Border_BlockSz_ApertureSz, string, MatType, BorderMode, int, int); PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerHarris, Combine(Values("gpu/stereobm/aloe-L.png"), Values(CV_8UC1, CV_32FC1), Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)), Values(3, 5, 7), Values(0, 3, 5, 7))) { const string fileName = GET_PARAM(0); const int type = GET_PARAM(1); const int borderMode = GET_PARAM(2); const int blockSize = GET_PARAM(3); const int apertureSize = GET_PARAM(4); cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(img.empty()); img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); const double k = 0.5; if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_img(img); cv::gpu::GpuMat dst; cv::gpu::GpuMat d_Dx; cv::gpu::GpuMat d_Dy; cv::gpu::GpuMat d_buf; TEST_CYCLE() cv::gpu::cornerHarris(d_img, dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, k, borderMode); GPU_SANITY_CHECK(dst, 1e-4); } else { cv::Mat dst; TEST_CYCLE() cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderMode); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // CornerMinEigenVal PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, ImgProc_CornerMinEigenVal, Combine(Values("gpu/stereobm/aloe-L.png"), Values(CV_8UC1, CV_32FC1), Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)), Values(3, 5, 7), Values(0, 3, 5, 7))) { const string fileName = GET_PARAM(0); const int type = GET_PARAM(1); const int borderMode = GET_PARAM(2); const int blockSize = GET_PARAM(3); const int apertureSize = GET_PARAM(4); cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(img.empty()); img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_img(img); cv::gpu::GpuMat dst; cv::gpu::GpuMat d_Dx; cv::gpu::GpuMat d_Dy; cv::gpu::GpuMat d_buf; TEST_CYCLE() cv::gpu::cornerMinEigenVal(d_img, dst, d_Dx, d_Dy, d_buf, blockSize, apertureSize, borderMode); GPU_SANITY_CHECK(dst, 1e-4); } else { cv::Mat dst; TEST_CYCLE() cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderMode); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // BuildWarpPlaneMaps PERF_TEST_P(Sz, ImgProc_BuildWarpPlaneMaps, GPU_TYPICAL_MAT_SIZES) { const cv::Size size = GetParam(); const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1); const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1); const cv::Mat T = cv::Mat::zeros(1, 3, CV_32F); if (PERF_RUN_GPU()) { cv::gpu::GpuMat map_x; cv::gpu::GpuMat map_y; TEST_CYCLE() cv::gpu::buildWarpPlaneMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, T, 1.0, map_x, map_y); GPU_SANITY_CHECK(map_x); GPU_SANITY_CHECK(map_y); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // BuildWarpCylindricalMaps PERF_TEST_P(Sz, ImgProc_BuildWarpCylindricalMaps, GPU_TYPICAL_MAT_SIZES) { const cv::Size size = GetParam(); const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1); const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1); if (PERF_RUN_GPU()) { cv::gpu::GpuMat map_x; cv::gpu::GpuMat map_y; TEST_CYCLE() cv::gpu::buildWarpCylindricalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, map_x, map_y); GPU_SANITY_CHECK(map_x); GPU_SANITY_CHECK(map_y); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // BuildWarpSphericalMaps PERF_TEST_P(Sz, ImgProc_BuildWarpSphericalMaps, GPU_TYPICAL_MAT_SIZES) { const cv::Size size = GetParam(); const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1); const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1); if (PERF_RUN_GPU()) { cv::gpu::GpuMat map_x; cv::gpu::GpuMat map_y; TEST_CYCLE() cv::gpu::buildWarpSphericalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, map_x, map_y); GPU_SANITY_CHECK(map_x); GPU_SANITY_CHECK(map_y); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // Rotate DEF_PARAM_TEST(Sz_Depth_Cn_Inter, cv::Size, MatDepth, MatCn, Interpolation); PERF_TEST_P(Sz_Depth_Cn_Inter, ImgProc_Rotate, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4, Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)))) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int interpolation = GET_PARAM(3); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::rotate(d_src, dst, size, 30.0, 0, 0, interpolation); GPU_SANITY_CHECK(dst, 1e-3, ERROR_RELATIVE); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // PyrDown PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrDown, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::pyrDown(d_src, dst); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::pyrDown(src, dst); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // PyrUp PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrUp, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::pyrUp(d_src, dst); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::pyrUp(src, dst); CPU_SANITY_CHECK(dst); } } ////////////////////////////////////////////////////////////////////// // CvtColor DEF_PARAM_TEST(Sz_Depth_Code, cv::Size, MatDepth, CvtColorInfo); PERF_TEST_P(Sz_Depth_Code, ImgProc_CvtColor, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_32F), Values(CvtColorInfo(4, 4, cv::COLOR_RGBA2BGRA), CvtColorInfo(4, 1, cv::COLOR_BGRA2GRAY), CvtColorInfo(1, 4, cv::COLOR_GRAY2BGRA), CvtColorInfo(3, 3, cv::COLOR_BGR2XYZ), CvtColorInfo(3, 3, cv::COLOR_XYZ2BGR), CvtColorInfo(3, 3, cv::COLOR_BGR2YCrCb), CvtColorInfo(3, 3, cv::COLOR_YCrCb2BGR), CvtColorInfo(3, 3, cv::COLOR_BGR2YUV), CvtColorInfo(3, 3, cv::COLOR_YUV2BGR), CvtColorInfo(3, 3, cv::COLOR_BGR2HSV), CvtColorInfo(3, 3, cv::COLOR_HSV2BGR), CvtColorInfo(3, 3, cv::COLOR_BGR2HLS), CvtColorInfo(3, 3, cv::COLOR_HLS2BGR), CvtColorInfo(3, 3, cv::COLOR_BGR2Lab), CvtColorInfo(3, 3, cv::COLOR_LBGR2Lab), CvtColorInfo(3, 3, cv::COLOR_BGR2Luv), CvtColorInfo(3, 3, cv::COLOR_LBGR2Luv), CvtColorInfo(3, 3, cv::COLOR_Lab2BGR), CvtColorInfo(3, 3, cv::COLOR_Lab2LBGR), CvtColorInfo(3, 3, cv::COLOR_Luv2RGB), CvtColorInfo(3, 3, cv::COLOR_Luv2LRGB)))) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const CvtColorInfo info = GET_PARAM(2); cv::Mat src(size, CV_MAKETYPE(depth, info.scn)); cv::randu(src, 0, depth == CV_8U ? 255.0 : 1.0); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::cvtColor(d_src, dst, info.code, info.dcn); GPU_SANITY_CHECK(dst, 1e-4); } else { cv::Mat dst; TEST_CYCLE() cv::cvtColor(src, dst, info.code, info.dcn); CPU_SANITY_CHECK(dst); } } PERF_TEST_P(Sz_Depth_Code, ImgProc_CvtColorBayer, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U), Values(CvtColorInfo(1, 3, cv::COLOR_BayerBG2BGR), CvtColorInfo(1, 3, cv::COLOR_BayerGB2BGR), CvtColorInfo(1, 3, cv::COLOR_BayerRG2BGR), CvtColorInfo(1, 3, cv::COLOR_BayerGR2BGR), CvtColorInfo(1, 1, cv::COLOR_BayerBG2GRAY), CvtColorInfo(1, 1, cv::COLOR_BayerGB2GRAY), CvtColorInfo(1, 1, cv::COLOR_BayerRG2GRAY), CvtColorInfo(1, 1, cv::COLOR_BayerGR2GRAY)))) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const CvtColorInfo info = GET_PARAM(2); cv::Mat src(size, CV_MAKETYPE(depth, info.scn)); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::cvtColor(d_src, dst, info.code, info.dcn); GPU_SANITY_CHECK(dst); } else { cv::Mat dst; TEST_CYCLE() cv::cvtColor(src, dst, info.code, info.dcn); CPU_SANITY_CHECK(dst); } } CV_ENUM(DemosaicingCode, COLOR_BayerBG2BGR, COLOR_BayerGB2BGR, COLOR_BayerRG2BGR, COLOR_BayerGR2BGR, COLOR_BayerBG2GRAY, COLOR_BayerGB2GRAY, COLOR_BayerRG2GRAY, COLOR_BayerGR2GRAY, COLOR_BayerBG2BGR_MHT, COLOR_BayerGB2BGR_MHT, COLOR_BayerRG2BGR_MHT, COLOR_BayerGR2BGR_MHT, COLOR_BayerBG2GRAY_MHT, COLOR_BayerGB2GRAY_MHT, COLOR_BayerRG2GRAY_MHT, COLOR_BayerGR2GRAY_MHT) DEF_PARAM_TEST(Sz_Code, cv::Size, DemosaicingCode); PERF_TEST_P(Sz_Code, ImgProc_Demosaicing, Combine(GPU_TYPICAL_MAT_SIZES, DemosaicingCode::all())) { const cv::Size size = GET_PARAM(0); const int code = GET_PARAM(1); cv::Mat src(size, CV_8UC1); declare.in(src, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::demosaicing(d_src, dst, code); GPU_SANITY_CHECK(dst); } else { if (code >= cv::COLOR_COLORCVT_MAX) { FAIL_NO_CPU(); } else { cv::Mat dst; TEST_CYCLE() cv::cvtColor(src, dst, code); CPU_SANITY_CHECK(dst); } } } ////////////////////////////////////////////////////////////////////// // SwapChannels PERF_TEST_P(Sz, ImgProc_SwapChannels, GPU_TYPICAL_MAT_SIZES) { const cv::Size size = GetParam(); cv::Mat src(size, CV_8UC4); declare.in(src, WARMUP_RNG); const int dstOrder[] = {2, 1, 0, 3}; if (PERF_RUN_GPU()) { cv::gpu::GpuMat dst(src); TEST_CYCLE() cv::gpu::swapChannels(dst, dstOrder); GPU_SANITY_CHECK(dst); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // AlphaComp CV_ENUM(AlphaOp, ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL, ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL) DEF_PARAM_TEST(Sz_Type_Op, cv::Size, MatType, AlphaOp); PERF_TEST_P(Sz_Type_Op, ImgProc_AlphaComp, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8UC4, CV_16UC4, CV_32SC4, CV_32FC4), AlphaOp::all())) { const cv::Size size = GET_PARAM(0); const int type = GET_PARAM(1); const int alpha_op = GET_PARAM(2); cv::Mat img1(size, type); cv::Mat img2(size, type); declare.in(img1, img2, WARMUP_RNG); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_img1(img1); const cv::gpu::GpuMat d_img2(img2); cv::gpu::GpuMat dst; TEST_CYCLE() cv::gpu::alphaComp(d_img1, d_img2, dst, alpha_op); GPU_SANITY_CHECK(dst, 1e-3, ERROR_RELATIVE); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // ImagePyramidBuild PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidBuild, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); const int nLayers = 5; const cv::Size dstSize(size.width / 2 + 10, size.height / 2 + 10); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::ImagePyramid d_pyr; TEST_CYCLE() d_pyr.build(d_src, nLayers); cv::gpu::GpuMat dst; d_pyr.getLayer(dst, dstSize); GPU_SANITY_CHECK(dst); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // ImagePyramidGetLayer PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidGetLayer, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); const int channels = GET_PARAM(2); const int type = CV_MAKE_TYPE(depth, channels); cv::Mat src(size, type); declare.in(src, WARMUP_RNG); const int nLayers = 3; const cv::Size dstSize(size.width / 2 + 10, size.height / 2 + 10); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat dst; cv::gpu::ImagePyramid d_pyr(d_src, nLayers); TEST_CYCLE() d_pyr.getLayer(dst, dstSize); GPU_SANITY_CHECK(dst); } else { FAIL_NO_CPU(); } } ////////////////////////////////////////////////////////////////////// // HoughLines namespace { struct Vec4iComparator { bool operator()(const cv::Vec4i& a, const cv::Vec4i b) const { if (a[0] != b[0]) return a[0] < b[0]; else if(a[1] != b[1]) return a[1] < b[1]; else if(a[2] != b[2]) return a[2] < b[2]; else return a[3] < b[3]; } }; struct Vec3fComparator { bool operator()(const cv::Vec3f& a, const cv::Vec3f b) const { if(a[0] != b[0]) return a[0] < b[0]; else if(a[1] != b[1]) return a[1] < b[1]; else return a[2] < b[2]; } }; struct Vec2fComparator { bool operator()(const cv::Vec2f& a, const cv::Vec2f b) const { if(a[0] != b[0]) return a[0] < b[0]; else return a[1] < b[1]; } }; } PERF_TEST_P(Sz, ImgProc_HoughLines, GPU_TYPICAL_MAT_SIZES) { declare.time(30.0); const cv::Size size = GetParam(); const float rho = 1.0f; const float theta = static_cast(CV_PI / 180.0); const int threshold = 300; cv::Mat src(size, CV_8UC1, cv::Scalar::all(0)); cv::line(src, cv::Point(0, 100), cv::Point(src.cols, 100), cv::Scalar::all(255), 1); cv::line(src, cv::Point(0, 200), cv::Point(src.cols, 200), cv::Scalar::all(255), 1); cv::line(src, cv::Point(0, 400), cv::Point(src.cols, 400), cv::Scalar::all(255), 1); cv::line(src, cv::Point(100, 0), cv::Point(100, src.rows), cv::Scalar::all(255), 1); cv::line(src, cv::Point(200, 0), cv::Point(200, src.rows), cv::Scalar::all(255), 1); cv::line(src, cv::Point(400, 0), cv::Point(400, src.rows), cv::Scalar::all(255), 1); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat d_lines; cv::gpu::HoughLinesBuf d_buf; TEST_CYCLE() cv::gpu::HoughLines(d_src, d_lines, d_buf, rho, theta, threshold); cv::Mat gpu_lines(d_lines.row(0)); cv::Vec2f* begin = gpu_lines.ptr(0); cv::Vec2f* end = begin + gpu_lines.cols; std::sort(begin, end, Vec2fComparator()); SANITY_CHECK(gpu_lines); } else { std::vector cpu_lines; TEST_CYCLE() cv::HoughLines(src, cpu_lines, rho, theta, threshold); SANITY_CHECK(cpu_lines); } } ////////////////////////////////////////////////////////////////////// // HoughLinesP DEF_PARAM_TEST_1(Image, std::string); PERF_TEST_P(Image, ImgProc_HoughLinesP, testing::Values("cv/shared/pic5.png", "stitching/a1.png")) { declare.time(30.0); const std::string fileName = getDataPath(GetParam()); const float rho = 1.0f; const float theta = static_cast(CV_PI / 180.0); const int threshold = 100; const int minLineLenght = 50; const int maxLineGap = 5; const cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE); ASSERT_FALSE(image.empty()); cv::Mat mask; cv::Canny(image, mask, 50, 100); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_mask(mask); cv::gpu::GpuMat d_lines; cv::gpu::HoughLinesBuf d_buf; TEST_CYCLE() cv::gpu::HoughLinesP(d_mask, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap); cv::Mat gpu_lines(d_lines); cv::Vec4i* begin = gpu_lines.ptr(); cv::Vec4i* end = begin + gpu_lines.cols; std::sort(begin, end, Vec4iComparator()); SANITY_CHECK(gpu_lines); } else { std::vector cpu_lines; TEST_CYCLE() cv::HoughLinesP(mask, cpu_lines, rho, theta, threshold, minLineLenght, maxLineGap); SANITY_CHECK(cpu_lines); } } ////////////////////////////////////////////////////////////////////// // HoughCircles DEF_PARAM_TEST(Sz_Dp_MinDist, cv::Size, float, float); PERF_TEST_P(Sz_Dp_MinDist, ImgProc_HoughCircles, Combine(GPU_TYPICAL_MAT_SIZES, Values(1.0f, 2.0f, 4.0f), Values(1.0f))) { declare.time(30.0); const cv::Size size = GET_PARAM(0); const float dp = GET_PARAM(1); const float minDist = GET_PARAM(2); const int minRadius = 10; const int maxRadius = 30; const int cannyThreshold = 100; const int votesThreshold = 15; cv::Mat src(size, CV_8UC1, cv::Scalar::all(0)); cv::circle(src, cv::Point(100, 100), 20, cv::Scalar::all(255), -1); cv::circle(src, cv::Point(200, 200), 25, cv::Scalar::all(255), -1); cv::circle(src, cv::Point(200, 100), 25, cv::Scalar::all(255), -1); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat d_circles; cv::gpu::HoughCirclesBuf d_buf; TEST_CYCLE() cv::gpu::HoughCircles(d_src, d_circles, d_buf, cv::HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius); cv::Mat gpu_circles(d_circles); cv::Vec3f* begin = gpu_circles.ptr(0); cv::Vec3f* end = begin + gpu_circles.cols; std::sort(begin, end, Vec3fComparator()); SANITY_CHECK(gpu_circles); } else { std::vector cpu_circles; TEST_CYCLE() cv::HoughCircles(src, cpu_circles, cv::HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius); SANITY_CHECK(cpu_circles); } } ////////////////////////////////////////////////////////////////////// // GeneralizedHough enum { GHT_POSITION = cv::GeneralizedHough::GHT_POSITION, GHT_SCALE = cv::GeneralizedHough::GHT_SCALE, GHT_ROTATION = cv::GeneralizedHough::GHT_ROTATION }; CV_FLAGS(GHMethod, GHT_POSITION, GHT_SCALE, GHT_ROTATION); DEF_PARAM_TEST(Method_Sz, GHMethod, cv::Size); PERF_TEST_P(Method_Sz, ImgProc_GeneralizedHough, Combine(Values(GHMethod(GHT_POSITION), GHMethod(GHT_POSITION | GHT_SCALE), GHMethod(GHT_POSITION | GHT_ROTATION), GHMethod(GHT_POSITION | GHT_SCALE | GHT_ROTATION)), GPU_TYPICAL_MAT_SIZES)) { declare.time(10); const int method = GET_PARAM(0); const cv::Size imageSize = GET_PARAM(1); const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(templ.empty()); cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0)); templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows))); cv::RNG rng(123456789); const int objCount = rng.uniform(5, 15); for (int i = 0; i < objCount; ++i) { double scale = rng.uniform(0.7, 1.3); bool rotate = 1 == rng.uniform(0, 2); cv::Mat obj; cv::resize(templ, obj, cv::Size(), scale, scale); if (rotate) obj = obj.t(); cv::Point pos; pos.x = rng.uniform(0, image.cols - obj.cols); pos.y = rng.uniform(0, image.rows - obj.rows); cv::Mat roi = image(cv::Rect(pos, obj.size())); cv::add(roi, obj, roi); } cv::Mat edges; cv::Canny(image, edges, 50, 100); cv::Mat dx, dy; cv::Sobel(image, dx, CV_32F, 1, 0); cv::Sobel(image, dy, CV_32F, 0, 1); if (PERF_RUN_GPU()) { const cv::gpu::GpuMat d_edges(edges); const cv::gpu::GpuMat d_dx(dx); const cv::gpu::GpuMat d_dy(dy); cv::gpu::GpuMat posAndVotes; cv::Ptr d_hough = cv::gpu::GeneralizedHough_GPU::create(method); if (method & GHT_ROTATION) { d_hough->set("maxAngle", 90.0); d_hough->set("angleStep", 2.0); } d_hough->setTemplate(cv::gpu::GpuMat(templ)); TEST_CYCLE() d_hough->detect(d_edges, d_dx, d_dy, posAndVotes); const cv::gpu::GpuMat positions(1, posAndVotes.cols, CV_32FC4, posAndVotes.data); GPU_SANITY_CHECK(positions); } else { cv::Mat positions; cv::Ptr hough = cv::GeneralizedHough::create(method); if (method & GHT_ROTATION) { hough->set("maxAngle", 90.0); hough->set("angleStep", 2.0); } hough->setTemplate(templ); TEST_CYCLE() hough->detect(edges, dx, dy, positions); CPU_SANITY_CHECK(positions); } }