/*M/////////////////////////////////////////////////////////////////////////////////////// // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // (3-clause BSD License) // // Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * Neither the names of the copyright holders nor the names of the contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall copyright holders or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "perf_precomp.hpp" #include #include namespace cvtest { using std::tr1::tuple; using std::tr1::get; using namespace perf; using namespace testing; using namespace cv; CV_ENUM(Method, RANSAC, LMEDS) typedef tuple AffineParams; typedef TestBaseWithParam EstimateAffine; #define ESTIMATE_PARAMS Combine(Values(100000, 5000, 100), Values(0.99, 0.95, 0.9), Method::all(), Values(10, 0)) static float rngIn(float from, float to) { return from + (to-from) * (float)theRNG(); } static Mat rngPartialAffMat() { double theta = rngIn(0, (float)CV_PI*2.f); double scale = rngIn(0, 3); double tx = rngIn(-2, 2); double ty = rngIn(-2, 2); double aff[2*3] = { std::cos(theta) * scale, -std::sin(theta) * scale, tx, std::sin(theta) * scale, std::cos(theta) * scale, ty }; return Mat(2, 3, CV_64F, aff).clone(); } PERF_TEST_P( EstimateAffine, EstimateAffine2D, ESTIMATE_PARAMS ) { AffineParams params = GetParam(); const int n = get<0>(params); const double confidence = get<1>(params); const int method = get<2>(params); const size_t refining = get<3>(params); Mat aff(2, 3, CV_64F); cv::randu(aff, -2., 2.); // LMEDS can't handle more than 50% outliers (by design) int m; if (method == LMEDS) m = 3*n/5; else m = 2*n/5; const float shift_outl = 15.f; const float noise_level = 20.f; Mat fpts(1, n, CV_32FC2); Mat tpts(1, n, CV_32FC2); randu(fpts, 0., 100.); transform(fpts, tpts, aff); /* adding noise to some points */ Mat outliers = tpts.colRange(m, n); outliers.reshape(1) += shift_outl; Mat noise (outliers.size(), outliers.type()); randu(noise, 0., noise_level); outliers += noise; Mat aff_est; vector inliers (n); warmup(inliers, WARMUP_WRITE); warmup(fpts, WARMUP_READ); warmup(tpts, WARMUP_READ); TEST_CYCLE() { aff_est = estimateAffine2D(fpts, tpts, inliers, method, 3, 2000, confidence, refining); } // we already have accuracy tests SANITY_CHECK_NOTHING(); } PERF_TEST_P( EstimateAffine, EstimateAffinePartial2D, ESTIMATE_PARAMS ) { AffineParams params = GetParam(); const int n = get<0>(params); const double confidence = get<1>(params); const int method = get<2>(params); const size_t refining = get<3>(params); Mat aff = rngPartialAffMat(); int m; // LMEDS can't handle more than 50% outliers (by design) if (method == LMEDS) m = 3*n/5; else m = 2*n/5; const float shift_outl = 15.f; const float noise_level = 20.f; Mat fpts(1, n, CV_32FC2); Mat tpts(1, n, CV_32FC2); randu(fpts, 0., 100.); transform(fpts, tpts, aff); /* adding noise*/ Mat outliers = tpts.colRange(m, n); outliers.reshape(1) += shift_outl; Mat noise (outliers.size(), outliers.type()); randu(noise, 0., noise_level); outliers += noise; Mat aff_est; vector inliers (n); warmup(inliers, WARMUP_WRITE); warmup(fpts, WARMUP_READ); warmup(tpts, WARMUP_READ); TEST_CYCLE() { aff_est = estimateAffinePartial2D(fpts, tpts, inliers, method, 3, 2000, confidence, refining); } // we already have accuracy tests SANITY_CHECK_NOTHING(); } } // namespace cvtest