// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "precomp.hpp" #include "op_inf_engine.hpp" #include #ifdef HAVE_INF_ENGINE #include #include #endif // HAVE_INF_ENGINE namespace cv { namespace dnn { #ifdef HAVE_INF_ENGINE #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5) InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::Builder::Layer& _layer) : BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(_layer) {} #else InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::CNNLayerPtr& _layer) : BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(_layer) {} void InfEngineBackendNode::connect(std::vector >& inputs, std::vector >& outputs) { layer->insData.resize(inputs.size()); for (int i = 0; i < inputs.size(); ++i) { InferenceEngine::DataPtr dataPtr = infEngineDataNode(inputs[i]); layer->insData[i] = InferenceEngine::DataWeakPtr(dataPtr); dataPtr->inputTo[layer->name] = layer; } CV_Assert(!outputs.empty()); layer->outData.resize(1); InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[0]); dataPtr->name = layer->name; layer->outData[0] = dataPtr; dataPtr->creatorLayer = InferenceEngine::CNNLayerWeakPtr(layer); } #endif static std::vector > infEngineWrappers(const std::vector >& ptrs) { std::vector > wrappers(ptrs.size()); for (int i = 0; i < ptrs.size(); ++i) { CV_Assert(!ptrs[i].empty()); wrappers[i] = ptrs[i].dynamicCast(); CV_Assert(!wrappers[i].empty()); } return wrappers; } #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5) InfEngineBackendNet::InfEngineBackendNet() : netBuilder("") { hasNetOwner = false; targetDevice = InferenceEngine::TargetDevice::eCPU; } InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net) : netBuilder(""), cnn(net) { hasNetOwner = true; targetDevice = InferenceEngine::TargetDevice::eCPU; } void InfEngineBackendNet::connect(const std::vector >& inputs, const std::vector >& outputs, const std::string& layerName) { std::vector > inpWrappers = infEngineWrappers(inputs); std::map::iterator it = layers.find(layerName); CV_Assert(it != layers.end()); const int layerId = it->second; for (size_t i = 0; i < inpWrappers.size(); ++i) { const auto& inp = inpWrappers[i]; const std::string& inpName = inp->dataPtr->name; int inpId; it = layers.find(inpName); if (it == layers.end()) { InferenceEngine::Builder::InputLayer inpLayer(inpName); std::vector shape(inp->blob->dims()); std::reverse(shape.begin(), shape.end()); inpLayer.setPort(InferenceEngine::Port(shape)); inpId = netBuilder.addLayer(inpLayer); layers.insert({inpName, inpId}); } else inpId = it->second; netBuilder.connect((size_t)inpId, {(size_t)layerId, i}); unconnectedLayersIds.erase(inpId); } CV_Assert(!outputs.empty()); InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[0]); dataPtr->name = layerName; } void InfEngineBackendNet::init(int targetId) { if (!hasNetOwner) { CV_Assert(!unconnectedLayersIds.empty()); for (int id : unconnectedLayersIds) { InferenceEngine::Builder::OutputLayer outLayer("myconv1"); netBuilder.addLayer({InferenceEngine::PortInfo(id)}, outLayer); } cnn = InferenceEngine::CNNNetwork(InferenceEngine::Builder::convertToICNNNetwork(netBuilder.build())); } switch (targetId) { case DNN_TARGET_CPU: targetDevice = InferenceEngine::TargetDevice::eCPU; break; case DNN_TARGET_OPENCL: case DNN_TARGET_OPENCL_FP16: targetDevice = InferenceEngine::TargetDevice::eGPU; break; case DNN_TARGET_MYRIAD: targetDevice = InferenceEngine::TargetDevice::eMYRIAD; break; case DNN_TARGET_FPGA: targetDevice = InferenceEngine::TargetDevice::eFPGA; break; default: CV_Error(Error::StsError, format("Unknown target identifier: %d", targetId)); } for (const auto& name : requestedOutputs) { cnn.addOutput(name); } for (const auto& it : cnn.getInputsInfo()) { const std::string& name = it.first; auto blobIt = allBlobs.find(name); CV_Assert(blobIt != allBlobs.end()); inpBlobs[name] = blobIt->second; it.second->setPrecision(blobIt->second->precision()); } for (const auto& it : cnn.getOutputsInfo()) { const std::string& name = it.first; auto blobIt = allBlobs.find(name); CV_Assert(blobIt != allBlobs.end()); outBlobs[name] = blobIt->second; it.second->setPrecision(blobIt->second->precision()); // Should be always FP32 } initPlugin(cnn); } void InfEngineBackendNet::addLayer(const InferenceEngine::Builder::Layer& layer) { int id = netBuilder.addLayer(layer); const std::string& layerName = layer.getName(); CV_Assert(layers.insert({layerName, id}).second); unconnectedLayersIds.insert(id); } void InfEngineBackendNet::addOutput(const std::string& name) { requestedOutputs.push_back(name); } #endif // IE >= R5 static InferenceEngine::Layout estimateLayout(const Mat& m) { if (m.dims == 4) return InferenceEngine::Layout::NCHW; else if (m.dims == 2) return InferenceEngine::Layout::NC; else return InferenceEngine::Layout::ANY; } static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "") { std::vector reversedShape(&m.size[0], &m.size[0] + m.dims); std::reverse(reversedShape.begin(), reversedShape.end()); if (m.type() == CV_32F) return InferenceEngine::DataPtr( new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32, estimateLayout(m)) ); else if (m.type() == CV_8U) return InferenceEngine::DataPtr( new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::U8, estimateLayout(m)) ); else CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type())); } InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector& shape, InferenceEngine::Layout layout) { if (m.type() == CV_32F) return InferenceEngine::make_shared_blob(InferenceEngine::Precision::FP32, layout, shape, (float*)m.data); else if (m.type() == CV_8U) return InferenceEngine::make_shared_blob(InferenceEngine::Precision::U8, layout, shape, (uint8_t*)m.data); else CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type())); } InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout) { std::vector reversedShape(&m.size[0], &m.size[0] + m.dims); std::reverse(reversedShape.begin(), reversedShape.end()); return wrapToInfEngineBlob(m, reversedShape, layout); } InferenceEngine::DataPtr infEngineDataNode(const Ptr& ptr) { CV_Assert(!ptr.empty()); Ptr p = ptr.dynamicCast(); CV_Assert(!p.empty()); return p->dataPtr; } InfEngineBackendWrapper::InfEngineBackendWrapper(int targetId, const cv::Mat& m) : BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, targetId) { dataPtr = wrapToInfEngineDataNode(m); blob = wrapToInfEngineBlob(m, estimateLayout(m)); } InfEngineBackendWrapper::InfEngineBackendWrapper(Ptr wrapper) : BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, wrapper->targetId) { Ptr ieWrapper = wrapper.dynamicCast(); CV_Assert(!ieWrapper.empty()); InferenceEngine::DataPtr srcData = ieWrapper->dataPtr; dataPtr = InferenceEngine::DataPtr( new InferenceEngine::Data(srcData->name, srcData->dims, srcData->precision, srcData->layout) ); blob = ieWrapper->blob; } Ptr InfEngineBackendWrapper::create(Ptr wrapper) { return Ptr(new InfEngineBackendWrapper(wrapper)); } InfEngineBackendWrapper::~InfEngineBackendWrapper() { } void InfEngineBackendWrapper::copyToHost() { } void InfEngineBackendWrapper::setHostDirty() { } #if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2018R5) InfEngineBackendNet::InfEngineBackendNet() { targetDevice = InferenceEngine::TargetDevice::eCPU; precision = InferenceEngine::Precision::FP32; hasNetOwner = false; } InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net) { targetDevice = InferenceEngine::TargetDevice::eCPU; precision = InferenceEngine::Precision::FP32; inputs = net.getInputsInfo(); outputs = net.getOutputsInfo(); layers.resize(net.layerCount()); // A hack to execute InfEngineBackendNet::layerCount correctly. netOwner = net; hasNetOwner = true; } void InfEngineBackendNet::Release() noexcept { layers.clear(); inputs.clear(); outputs.clear(); } void InfEngineBackendNet::setPrecision(InferenceEngine::Precision p) noexcept { precision = p; } InferenceEngine::Precision InfEngineBackendNet::getPrecision() noexcept { return hasNetOwner ? netOwner.getPrecision() : precision; } InferenceEngine::Precision InfEngineBackendNet::getPrecision() const noexcept { return hasNetOwner ? netOwner.getPrecision() : precision; } // Assume that outputs of network is unconnected blobs. void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &outputs_) noexcept { const_cast(this)->getOutputsInfo(outputs_); } void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &outputs_) const noexcept { outputs_ = outputs; } // Returns input references that aren't connected to internal outputs. void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) noexcept { const_cast(this)->getInputsInfo(inputs_); } // Returns input references that aren't connected to internal outputs. void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) const noexcept { inputs_ = inputs; } InferenceEngine::InputInfo::Ptr InfEngineBackendNet::getInput(const std::string &inputName) noexcept { return const_cast(this)->getInput(inputName); } InferenceEngine::InputInfo::Ptr InfEngineBackendNet::getInput(const std::string &inputName) const noexcept { const auto& it = inputs.find(inputName); CV_Assert(it != inputs.end()); return it->second; } void InfEngineBackendNet::getName(char*, size_t) noexcept { } void InfEngineBackendNet::getName(char*, size_t) const noexcept { } const std::string& InfEngineBackendNet::getName() const noexcept { return name; } InferenceEngine::StatusCode InfEngineBackendNet::serialize(const std::string&, const std::string&, InferenceEngine::ResponseDesc*) const noexcept { CV_Error(Error::StsNotImplemented, ""); return InferenceEngine::StatusCode::OK; } size_t InfEngineBackendNet::layerCount() noexcept { return const_cast(this)->layerCount(); } size_t InfEngineBackendNet::layerCount() const noexcept { return layers.size(); } InferenceEngine::DataPtr& InfEngineBackendNet::getData(const char *dname) noexcept { CV_Error(Error::StsNotImplemented, ""); return outputs.begin()->second; // Just return something. } void InfEngineBackendNet::addLayer(const InferenceEngine::CNNLayerPtr &layer) noexcept { layers.push_back(layer); inputs.clear(); outputs.clear(); } InferenceEngine::StatusCode InfEngineBackendNet::addOutput(const std::string &layerName, size_t outputIndex, InferenceEngine::ResponseDesc *resp) noexcept { for (const auto& l : layers) { for (const InferenceEngine::DataPtr& out : l->outData) { if (out->name == layerName) { outputs[out->name] = out; return InferenceEngine::StatusCode::OK; } } } CV_Error(Error::StsObjectNotFound, "Cannot find a layer " + layerName); return InferenceEngine::StatusCode::OK; } InferenceEngine::StatusCode InfEngineBackendNet::getLayerByName(const char *layerName, InferenceEngine::CNNLayerPtr &out, InferenceEngine::ResponseDesc *resp) noexcept { return const_cast(this)->getLayerByName(layerName, out, resp); } InferenceEngine::StatusCode InfEngineBackendNet::getLayerByName(const char *layerName, InferenceEngine::CNNLayerPtr &out, InferenceEngine::ResponseDesc *resp) const noexcept { for (auto& l : layers) { if (l->name == layerName) { out = l; return InferenceEngine::StatusCode::OK; } } CV_Error(Error::StsObjectNotFound, cv::format("Cannot find a layer %s", layerName)); return InferenceEngine::StatusCode::NOT_FOUND; } void InfEngineBackendNet::setTargetDevice(InferenceEngine::TargetDevice device) noexcept { if (device != InferenceEngine::TargetDevice::eCPU && device != InferenceEngine::TargetDevice::eGPU && device != InferenceEngine::TargetDevice::eMYRIAD && device != InferenceEngine::TargetDevice::eFPGA) CV_Error(Error::StsNotImplemented, ""); targetDevice = device; } InferenceEngine::TargetDevice InfEngineBackendNet::getTargetDevice() noexcept { return const_cast(this)->getTargetDevice(); } InferenceEngine::TargetDevice InfEngineBackendNet::getTargetDevice() const noexcept { return targetDevice == InferenceEngine::TargetDevice::eFPGA ? InferenceEngine::TargetDevice::eHETERO : targetDevice; } InferenceEngine::StatusCode InfEngineBackendNet::setBatchSize(const size_t) noexcept { CV_Error(Error::StsNotImplemented, ""); return InferenceEngine::StatusCode::OK; } InferenceEngine::StatusCode InfEngineBackendNet::setBatchSize(size_t size, InferenceEngine::ResponseDesc *responseDesc) noexcept { CV_Error(Error::StsNotImplemented, ""); return InferenceEngine::StatusCode::OK; } size_t InfEngineBackendNet::getBatchSize() const noexcept { size_t batchSize = 0; for (const auto& inp : inputs) { CV_Assert(inp.second); std::vector dims = inp.second->getDims(); CV_Assert(!dims.empty()); if (batchSize != 0) CV_Assert(batchSize == dims.back()); else batchSize = dims.back(); } return batchSize; } #if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R2) InferenceEngine::StatusCode InfEngineBackendNet::AddExtension(const InferenceEngine::IShapeInferExtensionPtr &extension, InferenceEngine::ResponseDesc *resp) noexcept { CV_Error(Error::StsNotImplemented, ""); return InferenceEngine::StatusCode::OK; } InferenceEngine::StatusCode InfEngineBackendNet::reshape(const InferenceEngine::ICNNNetwork::InputShapes &inputShapes, InferenceEngine::ResponseDesc *resp) noexcept { CV_Error(Error::StsNotImplemented, ""); return InferenceEngine::StatusCode::OK; } #endif void InfEngineBackendNet::init(int targetId) { if (inputs.empty()) { // Collect all external input blobs. inputs.clear(); std::map internalOutputs; for (const auto& l : layers) { for (const InferenceEngine::DataWeakPtr& ptr : l->insData) { InferenceEngine::DataPtr inp(ptr); if (internalOutputs.find(inp->name) == internalOutputs.end()) { InferenceEngine::InputInfo::Ptr inpInfo(new InferenceEngine::InputInfo()); inpInfo->setInputData(inp); if (inputs.find(inp->name) == inputs.end()) inputs[inp->name] = inpInfo; } } for (const InferenceEngine::DataPtr& out : l->outData) { // TODO: Replace to uniqueness assertion. if (internalOutputs.find(out->name) == internalOutputs.end()) internalOutputs[out->name] = out; } } CV_Assert(!inputs.empty()); #if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R3) for (const auto& inp : inputs) { InferenceEngine::LayerParams lp; lp.name = inp.first; lp.type = "Input"; lp.precision = InferenceEngine::Precision::FP32; std::shared_ptr inpLayer(new InferenceEngine::CNNLayer(lp)); layers.push_back(inpLayer); InferenceEngine::DataPtr dataPtr = inp.second->getInputData(); // TODO: remove precision dependency (see setInput.normalization tests) if (dataPtr->precision == InferenceEngine::Precision::FP32) { inpLayer->outData.assign(1, dataPtr); dataPtr->creatorLayer = InferenceEngine::CNNLayerWeakPtr(inpLayer); } } #endif } if (outputs.empty()) { // Add all unconnected blobs to output blobs. InferenceEngine::OutputsDataMap unconnectedOuts; for (const auto& l : layers) { if (l->type == "Input") continue; // Add all outputs. for (const InferenceEngine::DataPtr& out : l->outData) { // TODO: Replace to uniqueness assertion. if (unconnectedOuts.find(out->name) == unconnectedOuts.end()) unconnectedOuts[out->name] = out; } // Remove internally connected outputs. for (const InferenceEngine::DataWeakPtr& inp : l->insData) { unconnectedOuts.erase(InferenceEngine::DataPtr(inp)->name); } } CV_Assert(!unconnectedOuts.empty()); for (auto it = unconnectedOuts.begin(); it != unconnectedOuts.end(); ++it) { outputs[it->first] = it->second; } } // Set up input blobs. inpBlobs.clear(); for (const auto& it : inputs) { CV_Assert(allBlobs.find(it.first) != allBlobs.end()); inpBlobs[it.first] = allBlobs[it.first]; it.second->setPrecision(inpBlobs[it.first]->precision()); } // Set up output blobs. outBlobs.clear(); for (const auto& it : outputs) { CV_Assert(allBlobs.find(it.first) != allBlobs.end()); outBlobs[it.first] = allBlobs[it.first]; } switch (targetId) { case DNN_TARGET_CPU: setTargetDevice(InferenceEngine::TargetDevice::eCPU); break; case DNN_TARGET_OPENCL_FP16: setPrecision(InferenceEngine::Precision::FP16); /* Falls through. */ case DNN_TARGET_OPENCL: setTargetDevice(InferenceEngine::TargetDevice::eGPU); break; case DNN_TARGET_MYRIAD: { setPrecision(InferenceEngine::Precision::FP16); setTargetDevice(InferenceEngine::TargetDevice::eMYRIAD); break; } case DNN_TARGET_FPGA: { setPrecision(InferenceEngine::Precision::FP16); setTargetDevice(InferenceEngine::TargetDevice::eFPGA); break; } default: CV_Error(Error::StsError, format("Unknown target identifier: %d", targetId)); } if (!isInitialized()) initPlugin(*this); } #endif // IE < R5 static std::map sharedPlugins; void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net) { CV_Assert(!isInitialized()); try { auto pluginIt = sharedPlugins.find(targetDevice); if (pluginIt != sharedPlugins.end()) { enginePtr = pluginIt->second; } else { auto dispatcher = InferenceEngine::PluginDispatcher({""}); if (targetDevice == InferenceEngine::TargetDevice::eFPGA) enginePtr = dispatcher.getPluginByDevice("HETERO:FPGA,CPU"); else enginePtr = dispatcher.getSuitablePlugin(targetDevice); sharedPlugins[targetDevice] = enginePtr; if (targetDevice == InferenceEngine::TargetDevice::eCPU || targetDevice == InferenceEngine::TargetDevice::eFPGA) { std::string suffixes[] = {"_avx2", "_sse4", ""}; bool haveFeature[] = { checkHardwareSupport(CPU_AVX2), checkHardwareSupport(CPU_SSE4_2), true }; for (int i = 0; i < 3; ++i) { if (!haveFeature[i]) continue; #ifdef _WIN32 std::string libName = "cpu_extension" + suffixes[i] + ".dll"; #else std::string libName = "libcpu_extension" + suffixes[i] + ".so"; #endif // _WIN32 try { InferenceEngine::IExtensionPtr extension = InferenceEngine::make_so_pointer(libName); enginePtr->AddExtension(extension, 0); break; } catch(...) {} } // Some of networks can work without a library of extra layers. } } plugin = InferenceEngine::InferencePlugin(enginePtr); netExec = plugin.LoadNetwork(net, {}); infRequest = netExec.CreateInferRequest(); infRequest.SetInput(inpBlobs); infRequest.SetOutput(outBlobs); } catch (const std::exception& ex) { CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what())); } } bool InfEngineBackendNet::isInitialized() { return (bool)enginePtr; } void InfEngineBackendNet::addBlobs(const std::vector >& ptrs) { auto wrappers = infEngineWrappers(ptrs); for (const auto& wrapper : wrappers) { std::string name = wrapper->dataPtr->name; #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5) name = name.empty() ? "id1" : name; // TODO: drop the magic input name. #endif allBlobs.insert({name, wrapper->blob}); } } void InfEngineBackendNet::forward() { infRequest.Infer(); } Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob) { // NOTE: Inference Engine sizes are reversed. std::vector dims = blob->dims(); std::vector size(dims.rbegin(), dims.rend()); return Mat(size, CV_32F, (void*)blob->buffer()); } bool InfEngineBackendLayer::getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const { InferenceEngine::ICNNNetwork::InputShapes inShapes = t_net.getInputShapes(); InferenceEngine::ICNNNetwork::InputShapes::iterator itr; bool equal_flag = true; size_t i = 0; for (itr = inShapes.begin(); itr != inShapes.end(); ++itr) { InferenceEngine::SizeVector currentInShape(inputs[i].begin(), inputs[i].end()); if (itr->second != currentInShape) { itr->second = currentInShape; equal_flag = false; } i++; } if (!equal_flag) { InferenceEngine::CNNNetwork curr_t_net(t_net); curr_t_net.reshape(inShapes); } std::vector dims = t_net.getOutputsInfo()[name]->getDims(); outputs.push_back(MatShape(dims.begin(), dims.end())); return false; } bool InfEngineBackendLayer::supportBackend(int backendId) { return backendId == DNN_BACKEND_DEFAULT || (backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine()); } void InfEngineBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) { CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend."); } InferenceEngine::TBlob::Ptr convertFp16(const InferenceEngine::Blob::Ptr& blob) { auto halfs = InferenceEngine::make_shared_blob(InferenceEngine::Precision::FP16, blob->layout(), blob->dims()); halfs->allocate(); Mat floatsData(1, blob->size(), CV_32F, blob->buffer()); Mat halfsData(1, blob->size(), CV_16SC1, halfs->buffer()); convertFp16(floatsData, halfsData); return halfs; } #endif // HAVE_INF_ENGINE bool haveInfEngine() { #ifdef HAVE_INF_ENGINE return true; #else return false; #endif // HAVE_INF_ENGINE } void forwardInfEngine(Ptr& node) { CV_Assert(haveInfEngine()); #ifdef HAVE_INF_ENGINE CV_Assert(!node.empty()); Ptr ieNode = node.dynamicCast(); CV_Assert(!ieNode.empty()); ieNode->net->forward(); #endif // HAVE_INF_ENGINE } CV__DNN_EXPERIMENTAL_NS_BEGIN void resetMyriadDevice() { #ifdef HAVE_INF_ENGINE sharedPlugins.erase(InferenceEngine::TargetDevice::eMYRIAD); #endif // HAVE_INF_ENGINE } CV__DNN_EXPERIMENTAL_NS_END }} // namespace dnn, namespace cv