# svgfig.py copyright (C) 2008 Jim Pivarski # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA # # Full licence is in the file COPYING and at http://www.gnu.org/copyleft/gpl.html import re, codecs, os, platform, copy, itertools, math, cmath, random, sys, copy _epsilon = 1e-5 if sys.version_info >= (3,0): long = int basestring = (str,bytes) # Fix Python 2.x. try: UNICODE_EXISTS = bool(type(unicode)) except NameError: unicode = lambda s: str(s) if re.search("windows", platform.system(), re.I): try: import _winreg _default_directory = _winreg.QueryValueEx(_winreg.OpenKey(_winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\Current Version\Explorer\Shell Folders"), "Desktop")[0] # tmpdir = _winreg.QueryValueEx(_winreg.OpenKey(_winreg.HKEY_CURRENT_USER, "Environment"), "TEMP")[0] # if tmpdir[0:13] != "%USERPROFILE%": # tmpdir = os.path.expanduser("~") + tmpdir[13:] except: _default_directory = os.path.expanduser("~") + os.sep + "Desktop" _default_fileName = "tmp.svg" _hacks = {} _hacks["inkscape-text-vertical-shift"] = False def rgb(r, g, b, maximum=1.): """Create an SVG color string "#xxyyzz" from r, g, and b. r,g,b = 0 is black and r,g,b = maximum is white. """ return "#%02x%02x%02x" % (max(0, min(r*255./maximum, 255)), max(0, min(g*255./maximum, 255)), max(0, min(b*255./maximum, 255))) def attr_preprocess(attr): attrCopy = attr.copy() for name in attr.keys(): name_colon = re.sub("__", ":", name) if name_colon != name: attrCopy[name_colon] = attrCopy[name] del attrCopy[name] name = name_colon name_dash = re.sub("_", "-", name) if name_dash != name: attrCopy[name_dash] = attrCopy[name] del attrCopy[name] name = name_dash return attrCopy class SVG: """A tree representation of an SVG image or image fragment. SVG(t, sub, sub, sub..., attribute=value) t required SVG type name sub optional list nested SVG elements or text/Unicode attribute=value pairs optional keywords SVG attributes In attribute names, "__" becomes ":" and "_" becomes "-". SVG in XML SVG in Python >>> svg = SVG("g", SVG("rect", x=1, y=1, width=2, height=2), \ ... SVG("rect", x=3, y=3, width=2, height=2), \ ... id="mygroup", fill="blue") Sub-elements and attributes may be accessed through tree-indexing: >>> svg = SVG("text", SVG("tspan", "hello there"), stroke="none", fill="black") >>> svg[0] >>> svg[0, 0] 'hello there' >>> svg["fill"] 'black' Iteration is depth-first: >>> svg = SVG("g", SVG("g", SVG("line", x1=0, y1=0, x2=1, y2=1)), \ ... SVG("text", SVG("tspan", "hello again"))) ... >>> for ti, s in svg: ... print ti, repr(s) ... (0,) (0, 0) (0, 0, 'x2') 1 (0, 0, 'y1') 0 (0, 0, 'x1') 0 (0, 0, 'y2') 1 (1,) (1, 0) (1, 0, 0) 'hello again' Use "print" to navigate: >>> print svg None [0] [0, 0] [1] [1, 0] """ def __init__(self, *t_sub, **attr): if len(t_sub) == 0: raise TypeError( "SVG element must have a t (SVG type)") # first argument is t (SVG type) self.t = t_sub[0] # the rest are sub-elements self.sub = list(t_sub[1:]) # keyword arguments are attributes # need to preprocess to handle differences between SVG and Python syntax self.attr = attr_preprocess(attr) def __getitem__(self, ti): """Index is a list that descends tree, returning a sub-element if it ends with a number and an attribute if it ends with a string.""" obj = self if isinstance(ti, (list, tuple)): for i in ti[:-1]: obj = obj[i] ti = ti[-1] if isinstance(ti, (int, long, slice)): return obj.sub[ti] else: return obj.attr[ti] def __setitem__(self, ti, value): """Index is a list that descends tree, returning a sub-element if it ends with a number and an attribute if it ends with a string.""" obj = self if isinstance(ti, (list, tuple)): for i in ti[:-1]: obj = obj[i] ti = ti[-1] if isinstance(ti, (int, long, slice)): obj.sub[ti] = value else: obj.attr[ti] = value def __delitem__(self, ti): """Index is a list that descends tree, returning a sub-element if it ends with a number and an attribute if it ends with a string.""" obj = self if isinstance(ti, (list, tuple)): for i in ti[:-1]: obj = obj[i] ti = ti[-1] if isinstance(ti, (int, long, slice)): del obj.sub[ti] else: del obj.attr[ti] def __contains__(self, value): """x in svg == True iff x is an attribute in svg.""" return value in self.attr def __eq__(self, other): """x == y iff x represents the same SVG as y.""" if id(self) == id(other): return True return (isinstance(other, SVG) and self.t == other.t and self.sub == other.sub and self.attr == other.attr) def __ne__(self, other): """x != y iff x does not represent the same SVG as y.""" return not (self == other) def append(self, x): """Appends x to the list of sub-elements (drawn last, overlaps other primitives).""" self.sub.append(x) def prepend(self, x): """Prepends x to the list of sub-elements (drawn first may be overlapped by other primitives).""" self.sub[0:0] = [x] def extend(self, x): """Extends list of sub-elements by a list x.""" self.sub.extend(x) def clone(self, shallow=False): """Deep copy of SVG tree. Set shallow=True for a shallow copy.""" if shallow: return copy.copy(self) else: return copy.deepcopy(self) ### nested class class SVGDepthIterator: """Manages SVG iteration.""" def __init__(self, svg, ti, depth_limit): self.svg = svg self.ti = ti self.shown = False self.depth_limit = depth_limit def __iter__(self): return self def next(self): if not self.shown: self.shown = True if self.ti != (): return self.ti, self.svg if not isinstance(self.svg, SVG): raise StopIteration if self.depth_limit is not None and len(self.ti) >= self.depth_limit: raise StopIteration if "iterators" not in self.__dict__: self.iterators = [] for i, s in enumerate(self.svg.sub): self.iterators.append(self.__class__(s, self.ti + (i,), self.depth_limit)) for k, s in self.svg.attr.items(): self.iterators.append(self.__class__(s, self.ti + (k,), self.depth_limit)) self.iterators = itertools.chain(*self.iterators) return self.iterators.next() ### end nested class def depth_first(self, depth_limit=None): """Returns a depth-first generator over the SVG. If depth_limit is a number, stop recursion at that depth.""" return self.SVGDepthIterator(self, (), depth_limit) def breadth_first(self, depth_limit=None): """Not implemented yet. Any ideas on how to do it? Returns a breadth-first generator over the SVG. If depth_limit is a number, stop recursion at that depth.""" raise NotImplementedError( "Got an algorithm for breadth-first searching a tree without effectively copying the tree?") def __iter__(self): return self.depth_first() def items(self, sub=True, attr=True, text=True): """Get a recursively-generated list of tree-index, sub-element/attribute pairs. If sub == False, do not show sub-elements. If attr == False, do not show attributes. If text == False, do not show text/Unicode sub-elements. """ output = [] for ti, s in self: show = False if isinstance(ti[-1], (int, long)): if isinstance(s, basestring): show = text else: show = sub else: show = attr if show: output.append((ti, s)) return output def keys(self, sub=True, attr=True, text=True): """Get a recursively-generated list of tree-indexes. If sub == False, do not show sub-elements. If attr == False, do not show attributes. If text == False, do not show text/Unicode sub-elements. """ return [ti for ti, s in self.items(sub, attr, text)] def values(self, sub=True, attr=True, text=True): """Get a recursively-generated list of sub-elements and attributes. If sub == False, do not show sub-elements. If attr == False, do not show attributes. If text == False, do not show text/Unicode sub-elements. """ return [s for ti, s in self.items(sub, attr, text)] def __repr__(self): return self.xml(depth_limit=0) def __str__(self): """Print (actually, return a string of) the tree in a form useful for browsing.""" return self.tree(sub=True, attr=False, text=False) def tree(self, depth_limit=None, sub=True, attr=True, text=True, tree_width=20, obj_width=80): """Print (actually, return a string of) the tree in a form useful for browsing. If depth_limit == a number, stop recursion at that depth. If sub == False, do not show sub-elements. If attr == False, do not show attributes. If text == False, do not show text/Unicode sub-elements. tree_width is the number of characters reserved for printing tree indexes. obj_width is the number of characters reserved for printing sub-elements/attributes. """ output = [] line = "%s %s" % (("%%-%ds" % tree_width) % repr(None), ("%%-%ds" % obj_width) % (repr(self))[0:obj_width]) output.append(line) for ti, s in self.depth_first(depth_limit): show = False if isinstance(ti[-1], (int, long)): if isinstance(s, basestring): show = text else: show = sub else: show = attr if show: line = "%s %s" % (("%%-%ds" % tree_width) % repr(list(ti)), ("%%-%ds" % obj_width) % (" "*len(ti) + repr(s))[0:obj_width]) output.append(line) return "\n".join(output) def xml(self, indent=u" ", newl=u"\n", depth_limit=None, depth=0): """Get an XML representation of the SVG. indent string used for indenting newl string used for newlines If depth_limit == a number, stop recursion at that depth. depth starting depth (not useful for users) print svg.xml() """ attrstr = [] for n, v in self.attr.items(): if isinstance(v, dict): v = u"; ".join([u"%s:%s" % (ni, vi) for ni, vi in v.items()]) elif isinstance(v, (list, tuple)): v = u", ".join(v) attrstr.append(u" %s=%s" % (n, repr(v))) attrstr = u"".join(attrstr) if len(self.sub) == 0: return u"%s<%s%s />" % (indent * depth, self.t, attrstr) if depth_limit is None or depth_limit > depth: substr = [] for s in self.sub: if isinstance(s, SVG): substr.append(s.xml(indent, newl, depth_limit, depth + 1) + newl) elif isinstance(s, basestring): substr.append(u"%s%s%s" % (indent * (depth + 1), s, newl)) else: substr.append("%s%s%s" % (indent * (depth + 1), repr(s), newl)) substr = u"".join(substr) return u"%s<%s%s>%s%s%s" % (indent * depth, self.t, attrstr, newl, substr, indent * depth, self.t) else: return u"%s<%s (%d sub)%s />" % (indent * depth, self.t, len(self.sub), attrstr) def standalone_xml(self, indent=u" ", newl=u"\n", encoding=u"utf-8"): """Get an XML representation of the SVG that can be saved/rendered. indent string used for indenting newl string used for newlines """ if self.t == "svg": top = self else: top = canvas(self) return u"""\ """ % encoding + (u"".join(top.__standalone_xml(indent, newl))) # end of return statement def __standalone_xml(self, indent, newl): output = [u"<%s" % self.t] for n, v in self.attr.items(): if isinstance(v, dict): v = u"; ".join([u"%s:%s" % (ni, vi) for ni, vi in v.items()]) elif isinstance(v, (list, tuple)): v = u", ".join(v) output.append(u' %s="%s"' % (n, v)) if len(self.sub) == 0: output.append(u" />%s%s" % (newl, newl)) return output elif self.t == "text" or self.t == "tspan" or self.t == "style": output.append(u">") else: output.append(u">%s%s" % (newl, newl)) for s in self.sub: if isinstance(s, SVG): output.extend(s.__standalone_xml(indent, newl)) else: output.append(unicode(s)) if self.t == "tspan": output.append(u"" % self.t) else: output.append(u"%s%s" % (self.t, newl, newl)) return output def interpret_fileName(self, fileName=None): if fileName is None: fileName = _default_fileName if re.search("windows", platform.system(), re.I) and not os.path.isabs(fileName): fileName = _default_directory + os.sep + fileName return fileName def save(self, fileName=None, encoding="utf-8", compresslevel=None): """Save to a file for viewing. Note that svg.save() overwrites the file named _default_fileName. fileName default=None note that _default_fileName will be overwritten if no fileName is specified. If the extension is ".svgz" or ".gz", the output will be gzipped encoding default="utf-8" file encoding compresslevel default=None if a number, the output will be gzipped with that compression level (1-9, 1 being fastest and 9 most thorough) """ fileName = self.interpret_fileName(fileName) if compresslevel is not None or re.search(r"\.svgz$", fileName, re.I) or re.search(r"\.gz$", fileName, re.I): import gzip if compresslevel is None: f = gzip.GzipFile(fileName, "w") else: f = gzip.GzipFile(fileName, "w", compresslevel) f = codecs.EncodedFile(f, "utf-8", encoding) f.write(self.standalone_xml(encoding=encoding)) f.close() else: f = codecs.open(fileName, "w", encoding=encoding) f.write(self.standalone_xml(encoding=encoding)) f.close() def inkview(self, fileName=None, encoding="utf-8"): """View in "inkview", assuming that program is available on your system. fileName default=None note that any file named _default_fileName will be overwritten if no fileName is specified. If the extension is ".svgz" or ".gz", the output will be gzipped encoding default="utf-8" file encoding """ fileName = self.interpret_fileName(fileName) self.save(fileName, encoding) os.spawnvp(os.P_NOWAIT, "inkview", ("inkview", fileName)) def inkscape(self, fileName=None, encoding="utf-8"): """View in "inkscape", assuming that program is available on your system. fileName default=None note that any file named _default_fileName will be overwritten if no fileName is specified. If the extension is ".svgz" or ".gz", the output will be gzipped encoding default="utf-8" file encoding """ fileName = self.interpret_fileName(fileName) self.save(fileName, encoding) os.spawnvp(os.P_NOWAIT, "inkscape", ("inkscape", fileName)) def firefox(self, fileName=None, encoding="utf-8"): """View in "firefox", assuming that program is available on your system. fileName default=None note that any file named _default_fileName will be overwritten if no fileName is specified. If the extension is ".svgz" or ".gz", the output will be gzipped encoding default="utf-8" file encoding """ fileName = self.interpret_fileName(fileName) self.save(fileName, encoding) os.spawnvp(os.P_NOWAIT, "firefox", ("firefox", fileName)) ###################################################################### _canvas_defaults = {"width": "400px", "height": "400px", "viewBox": "0 0 100 100", "xmlns": "http://www.w3.org/2000/svg", "xmlns:xlink": "http://www.w3.org/1999/xlink", "version": "1.1", "style": {"stroke": "black", "fill": "none", "stroke-width": "0.5pt", "stroke-linejoin": "round", "text-anchor": "middle", }, "font-family": ["Helvetica", "Arial", "FreeSans", "Sans", "sans", "sans-serif"], } def canvas(*sub, **attr): """Creates a top-level SVG object, allowing the user to control the image size and aspect ratio. canvas(sub, sub, sub..., attribute=value) sub optional list nested SVG elements or text/Unicode attribute=value pairs optional keywords SVG attributes Default attribute values: width "400px" height "400px" viewBox "0 0 100 100" xmlns "http://www.w3.org/2000/svg" xmlns:xlink "http://www.w3.org/1999/xlink" version "1.1" style "stroke:black; fill:none; stroke-width:0.5pt; stroke-linejoin:round; text-anchor:middle" font-family "Helvetica,Arial,FreeSans?,Sans,sans,sans-serif" """ attributes = dict(_canvas_defaults) attributes.update(attr) if sub is None or sub == (): return SVG("svg", **attributes) else: return SVG("svg", *sub, **attributes) def canvas_outline(*sub, **attr): """Same as canvas(), but draws an outline around the drawable area, so that you know how close your image is to the edges.""" svg = canvas(*sub, **attr) match = re.match(r"[, \t]*([0-9e.+\-]+)[, \t]+([0-9e.+\-]+)[, \t]+([0-9e.+\-]+)[, \t]+([0-9e.+\-]+)[, \t]*", svg["viewBox"]) if match is None: raise ValueError( "canvas viewBox is incorrectly formatted") x, y, width, height = [float(x) for x in match.groups()] svg.prepend(SVG("rect", x=x, y=y, width=width, height=height, stroke="none", fill="cornsilk")) svg.append(SVG("rect", x=x, y=y, width=width, height=height, stroke="black", fill="none")) return svg def template(fileName, svg, replaceme="REPLACEME"): """Loads an SVG image from a file, replacing instances of with a given svg object. fileName required name of the template SVG svg required SVG object for replacement replaceme default="REPLACEME" fake SVG element to be replaced by the given object >>> print load("template.svg") None >>> >>> print template("template.svg", SVG("circle", cx=50, cy=50, r=30)) None """ output = load(fileName) for ti, s in output: if isinstance(s, SVG) and s.t == replaceme: output[ti] = svg return output ###################################################################### def load(fileName): """Loads an SVG image from a file.""" return load_stream(file(fileName)) def load_stream(stream): """Loads an SVG image from a stream (can be a string or a file object).""" from xml.sax import handler, make_parser from xml.sax.handler import feature_namespaces, feature_external_ges, feature_external_pes class ContentHandler(handler.ContentHandler): def __init__(self): self.stack = [] self.output = None self.all_whitespace = re.compile(r"^\s*$") def startElement(self, name, attr): s = SVG(name) s.attr = dict(attr.items()) if len(self.stack) > 0: last = self.stack[-1] last.sub.append(s) self.stack.append(s) def characters(self, ch): if not isinstance(ch, basestring) or self.all_whitespace.match(ch) is None: if len(self.stack) > 0: last = self.stack[-1] if len(last.sub) > 0 and isinstance(last.sub[-1], basestring): last.sub[-1] = last.sub[-1] + "\n" + ch else: last.sub.append(ch) def endElement(self, name): if len(self.stack) > 0: last = self.stack[-1] if (isinstance(last, SVG) and last.t == "style" and "type" in last.attr and last.attr["type"] == "text/css" and len(last.sub) == 1 and isinstance(last.sub[0], basestring)): last.sub[0] = "" self.output = self.stack.pop() ch = ContentHandler() parser = make_parser() parser.setContentHandler(ch) parser.setFeature(feature_namespaces, 0) parser.setFeature(feature_external_ges, 0) parser.parse(stream) return ch.output ###################################################################### def set_func_name(f, name): """try to patch the function name string into a function object""" try: f.func_name = name except TypeError: # py 2.3 raises: TypeError: readonly attribute pass def totrans(expr, vars=("x", "y"), globals=None, locals=None): """Converts to a coordinate transformation (a function that accepts two arguments and returns two values). expr required a string expression or a function of two real or one complex value vars default=("x", "y") independent variable names; a singleton ("z",) is interpreted as complex globals default=None dict of global variables locals default=None dict of local variables """ if locals is None: locals = {} # python 2.3's eval() won't accept None if callable(expr): if expr.func_code.co_argcount == 2: return expr elif expr.func_code.co_argcount == 1: split = lambda z: (z.real, z.imag) output = lambda x, y: split(expr(x + y*1j)) set_func_name(output, expr.func_name) return output else: raise TypeError( "must be a function of 2 or 1 variables") if len(vars) == 2: g = math.__dict__ if globals is not None: g.update(globals) output = eval("lambda %s, %s: (%s)" % (vars[0], vars[1], expr), g, locals) set_func_name(output, "%s,%s -> %s" % (vars[0], vars[1], expr)) return output elif len(vars) == 1: g = cmath.__dict__ if globals is not None: g.update(globals) output = eval("lambda %s: (%s)" % (vars[0], expr), g, locals) split = lambda z: (z.real, z.imag) output2 = lambda x, y: split(output(x + y*1j)) set_func_name(output2, "%s -> %s" % (vars[0], expr)) return output2 else: raise TypeError( "vars must have 2 or 1 elements") def window(xmin, xmax, ymin, ymax, x=0, y=0, width=100, height=100, xlogbase=None, ylogbase=None, minusInfinity=-1000, flipx=False, flipy=True): """Creates and returns a coordinate transformation (a function that accepts two arguments and returns two values) that transforms from (xmin, ymin), (xmax, ymax) to (x, y), (x + width, y + height). xlogbase, ylogbase default=None, None if a number, transform logarithmically with given base minusInfinity default=-1000 what to return if log(0 or negative) is attempted flipx default=False if true, reverse the direction of x flipy default=True if true, reverse the direction of y (When composing windows, be sure to set flipy=False.) """ if flipx: ox1 = x + width ox2 = x else: ox1 = x ox2 = x + width if flipy: oy1 = y + height oy2 = y else: oy1 = y oy2 = y + height ix1 = xmin iy1 = ymin ix2 = xmax iy2 = ymax if xlogbase is not None and (ix1 <= 0. or ix2 <= 0.): raise ValueError ("x range incompatible with log scaling: (%g, %g)" % (ix1, ix2)) if ylogbase is not None and (iy1 <= 0. or iy2 <= 0.): raise ValueError ("y range incompatible with log scaling: (%g, %g)" % (iy1, iy2)) def maybelog(t, it1, it2, ot1, ot2, logbase): if t <= 0.: return minusInfinity else: return ot1 + 1.*(math.log(t, logbase) - math.log(it1, logbase))/(math.log(it2, logbase) - math.log(it1, logbase)) * (ot2 - ot1) xlogstr, ylogstr = "", "" if xlogbase is None: xfunc = lambda x: ox1 + 1.*(x - ix1)/(ix2 - ix1) * (ox2 - ox1) else: xfunc = lambda x: maybelog(x, ix1, ix2, ox1, ox2, xlogbase) xlogstr = " xlog=%g" % xlogbase if ylogbase is None: yfunc = lambda y: oy1 + 1.*(y - iy1)/(iy2 - iy1) * (oy2 - oy1) else: yfunc = lambda y: maybelog(y, iy1, iy2, oy1, oy2, ylogbase) ylogstr = " ylog=%g" % ylogbase output = lambda x, y: (xfunc(x), yfunc(y)) set_func_name(output, "(%g, %g), (%g, %g) -> (%g, %g), (%g, %g)%s%s" % ( ix1, ix2, iy1, iy2, ox1, ox2, oy1, oy2, xlogstr, ylogstr)) return output def rotate(angle, cx=0, cy=0): """Creates and returns a coordinate transformation which rotates around (cx,cy) by "angle" degrees.""" angle *= math.pi/180. return lambda x, y: (cx + math.cos(angle)*(x - cx) - math.sin(angle)*(y - cy), cy + math.sin(angle)*(x - cx) + math.cos(angle)*(y - cy)) class Fig: """Stores graphics primitive objects and applies a single coordinate transformation to them. To compose coordinate systems, nest Fig objects. Fig(obj, obj, obj..., trans=function) obj optional list a list of drawing primitives trans default=None a coordinate transformation function >>> fig = Fig(Line(0,0,1,1), Rect(0.2,0.2,0.8,0.8), trans="2*x, 2*y") >>> print fig.SVG().xml() >>> print Fig(fig, trans="x/2., y/2.").SVG().xml() """ def __repr__(self): if self.trans is None: return "" % len(self.d) elif isinstance(self.trans, basestring): return " %s>" % (len(self.d), self.trans) else: return "" % (len(self.d), self.trans.func_name) def __init__(self, *d, **kwds): self.d = list(d) defaults = {"trans": None, } defaults.update(kwds) kwds = defaults self.trans = kwds["trans"]; del kwds["trans"] if len(kwds) != 0: raise TypeError ("Fig() got unexpected keyword arguments %s" % kwds.keys()) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object. Coordinate transformations in nested Figs will be composed. """ if trans is None: trans = self.trans if isinstance(trans, basestring): trans = totrans(trans) output = SVG("g") for s in self.d: if isinstance(s, SVG): output.append(s) elif isinstance(s, Fig): strans = s.trans if isinstance(strans, basestring): strans = totrans(strans) if trans is None: subtrans = strans elif strans is None: subtrans = trans else: subtrans = lambda x, y: trans(*strans(x, y)) output.sub += s.SVG(subtrans).sub elif s is None: pass else: output.append(s.SVG(trans)) return output class Plot: """Acts like Fig, but draws a coordinate axis. You also need to supply plot ranges. Plot(xmin, xmax, ymin, ymax, obj, obj, obj..., keyword options...) xmin, xmax required minimum and maximum x values (in the objs' coordinates) ymin, ymax required minimum and maximum y values (in the objs' coordinates) obj optional list drawing primitives keyword options keyword list options defined below The following are keyword options, with their default values: trans None transformation function x, y 5, 5 upper-left corner of the Plot in SVG coordinates width, height 90, 90 width and height of the Plot in SVG coordinates flipx, flipy False, True flip the sign of the coordinate axis minusInfinity -1000 if an axis is logarithmic and an object is plotted at 0 or a negative value, -1000 will be used as a stand-in for NaN atx, aty 0, 0 the place where the coordinate axes cross xticks -10 request ticks according to the standard tick specification (see help(Ticks)) xminiticks True request miniticks according to the standard minitick specification xlabels True request tick labels according to the standard tick label specification xlogbase None if a number, the axis and transformation are logarithmic with ticks at the given base (10 being the most common) (same for y) arrows None if a new identifier, create arrow markers and draw them at the ends of the coordinate axes text_attr {} a dictionary of attributes for label text axis_attr {} a dictionary of attributes for the axis lines """ def __repr__(self): if self.trans is None: return "" % len(self.d) else: return "" % (len(self.d), self.trans.func_name) def __init__(self, xmin, xmax, ymin, ymax, *d, **kwds): self.xmin, self.xmax, self.ymin, self.ymax = xmin, xmax, ymin, ymax self.d = list(d) defaults = {"trans": None, "x": 5, "y": 5, "width": 90, "height": 90, "flipx": False, "flipy": True, "minusInfinity": -1000, "atx": 0, "xticks": -10, "xminiticks": True, "xlabels": True, "xlogbase": None, "aty": 0, "yticks": -10, "yminiticks": True, "ylabels": True, "ylogbase": None, "arrows": None, "text_attr": {}, "axis_attr": {}, } defaults.update(kwds) kwds = defaults self.trans = kwds["trans"]; del kwds["trans"] self.x = kwds["x"]; del kwds["x"] self.y = kwds["y"]; del kwds["y"] self.width = kwds["width"]; del kwds["width"] self.height = kwds["height"]; del kwds["height"] self.flipx = kwds["flipx"]; del kwds["flipx"] self.flipy = kwds["flipy"]; del kwds["flipy"] self.minusInfinity = kwds["minusInfinity"]; del kwds["minusInfinity"] self.atx = kwds["atx"]; del kwds["atx"] self.xticks = kwds["xticks"]; del kwds["xticks"] self.xminiticks = kwds["xminiticks"]; del kwds["xminiticks"] self.xlabels = kwds["xlabels"]; del kwds["xlabels"] self.xlogbase = kwds["xlogbase"]; del kwds["xlogbase"] self.aty = kwds["aty"]; del kwds["aty"] self.yticks = kwds["yticks"]; del kwds["yticks"] self.yminiticks = kwds["yminiticks"]; del kwds["yminiticks"] self.ylabels = kwds["ylabels"]; del kwds["ylabels"] self.ylogbase = kwds["ylogbase"]; del kwds["ylogbase"] self.arrows = kwds["arrows"]; del kwds["arrows"] self.text_attr = kwds["text_attr"]; del kwds["text_attr"] self.axis_attr = kwds["axis_attr"]; del kwds["axis_attr"] if len(kwds) != 0: raise TypeError ("Plot() got unexpected keyword arguments %s" % kwds.keys()) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" if trans is None: trans = self.trans if isinstance(trans, basestring): trans = totrans(trans) self.last_window = window(self.xmin, self.xmax, self.ymin, self.ymax, x=self.x, y=self.y, width=self.width, height=self.height, xlogbase=self.xlogbase, ylogbase=self.ylogbase, minusInfinity=self.minusInfinity, flipx=self.flipx, flipy=self.flipy) d = ([Axes(self.xmin, self.xmax, self.ymin, self.ymax, self.atx, self.aty, self.xticks, self.xminiticks, self.xlabels, self.xlogbase, self.yticks, self.yminiticks, self.ylabels, self.ylogbase, self.arrows, self.text_attr, **self.axis_attr)] + self.d) return Fig(Fig(*d, **{"trans": trans})).SVG(self.last_window) class Frame: text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, } axis_defaults = {} tick_length = 1.5 minitick_length = 0.75 text_xaxis_offset = 1. text_yaxis_offset = 2. text_xtitle_offset = 6. text_ytitle_offset = 12. def __repr__(self): return "" % len(self.d) def __init__(self, xmin, xmax, ymin, ymax, *d, **kwds): """Acts like Fig, but draws a coordinate frame around the data. You also need to supply plot ranges. Frame(xmin, xmax, ymin, ymax, obj, obj, obj..., keyword options...) xmin, xmax required minimum and maximum x values (in the objs' coordinates) ymin, ymax required minimum and maximum y values (in the objs' coordinates) obj optional list drawing primitives keyword options keyword list options defined below The following are keyword options, with their default values: x, y 20, 5 upper-left corner of the Frame in SVG coordinates width, height 75, 80 width and height of the Frame in SVG coordinates flipx, flipy False, True flip the sign of the coordinate axis minusInfinity -1000 if an axis is logarithmic and an object is plotted at 0 or a negative value, -1000 will be used as a stand-in for NaN xtitle None if a string, label the x axis xticks -10 request ticks according to the standard tick specification (see help(Ticks)) xminiticks True request miniticks according to the standard minitick specification xlabels True request tick labels according to the standard tick label specification xlogbase None if a number, the axis and transformation are logarithmic with ticks at the given base (10 being the most common) (same for y) text_attr {} a dictionary of attributes for label text axis_attr {} a dictionary of attributes for the axis lines """ self.xmin, self.xmax, self.ymin, self.ymax = xmin, xmax, ymin, ymax self.d = list(d) defaults = {"x": 20, "y": 5, "width": 75, "height": 80, "flipx": False, "flipy": True, "minusInfinity": -1000, "xtitle": None, "xticks": -10, "xminiticks": True, "xlabels": True, "x2labels": None, "xlogbase": None, "ytitle": None, "yticks": -10, "yminiticks": True, "ylabels": True, "y2labels": None, "ylogbase": None, "text_attr": {}, "axis_attr": {}, } defaults.update(kwds) kwds = defaults self.x = kwds["x"]; del kwds["x"] self.y = kwds["y"]; del kwds["y"] self.width = kwds["width"]; del kwds["width"] self.height = kwds["height"]; del kwds["height"] self.flipx = kwds["flipx"]; del kwds["flipx"] self.flipy = kwds["flipy"]; del kwds["flipy"] self.minusInfinity = kwds["minusInfinity"]; del kwds["minusInfinity"] self.xtitle = kwds["xtitle"]; del kwds["xtitle"] self.xticks = kwds["xticks"]; del kwds["xticks"] self.xminiticks = kwds["xminiticks"]; del kwds["xminiticks"] self.xlabels = kwds["xlabels"]; del kwds["xlabels"] self.x2labels = kwds["x2labels"]; del kwds["x2labels"] self.xlogbase = kwds["xlogbase"]; del kwds["xlogbase"] self.ytitle = kwds["ytitle"]; del kwds["ytitle"] self.yticks = kwds["yticks"]; del kwds["yticks"] self.yminiticks = kwds["yminiticks"]; del kwds["yminiticks"] self.ylabels = kwds["ylabels"]; del kwds["ylabels"] self.y2labels = kwds["y2labels"]; del kwds["y2labels"] self.ylogbase = kwds["ylogbase"]; del kwds["ylogbase"] self.text_attr = dict(self.text_defaults) self.text_attr.update(kwds["text_attr"]); del kwds["text_attr"] self.axis_attr = dict(self.axis_defaults) self.axis_attr.update(kwds["axis_attr"]); del kwds["axis_attr"] if len(kwds) != 0: raise TypeError( "Frame() got unexpected keyword arguments %s" % kwds.keys()) def SVG(self): """Apply the window transformation and return an SVG object.""" self.last_window = window(self.xmin, self.xmax, self.ymin, self.ymax, x=self.x, y=self.y, width=self.width, height=self.height, xlogbase=self.xlogbase, ylogbase=self.ylogbase, minusInfinity=self.minusInfinity, flipx=self.flipx, flipy=self.flipy) left = YAxis(self.ymin, self.ymax, self.xmin, self.yticks, self.yminiticks, self.ylabels, self.ylogbase, None, None, None, self.text_attr, **self.axis_attr) right = YAxis(self.ymin, self.ymax, self.xmax, self.yticks, self.yminiticks, self.y2labels, self.ylogbase, None, None, None, self.text_attr, **self.axis_attr) bottom = XAxis(self.xmin, self.xmax, self.ymin, self.xticks, self.xminiticks, self.xlabels, self.xlogbase, None, None, None, self.text_attr, **self.axis_attr) top = XAxis(self.xmin, self.xmax, self.ymax, self.xticks, self.xminiticks, self.x2labels, self.xlogbase, None, None, None, self.text_attr, **self.axis_attr) left.tick_start = -self.tick_length left.tick_end = 0 left.minitick_start = -self.minitick_length left.minitick_end = 0. left.text_start = self.text_yaxis_offset right.tick_start = 0. right.tick_end = self.tick_length right.minitick_start = 0. right.minitick_end = self.minitick_length right.text_start = -self.text_yaxis_offset right.text_attr["text-anchor"] = "start" bottom.tick_start = 0. bottom.tick_end = self.tick_length bottom.minitick_start = 0. bottom.minitick_end = self.minitick_length bottom.text_start = -self.text_xaxis_offset top.tick_start = -self.tick_length top.tick_end = 0. top.minitick_start = -self.minitick_length top.minitick_end = 0. top.text_start = self.text_xaxis_offset top.text_attr["dominant-baseline"] = "text-after-edge" output = Fig(*self.d).SVG(self.last_window) output.prepend(left.SVG(self.last_window)) output.prepend(bottom.SVG(self.last_window)) output.prepend(right.SVG(self.last_window)) output.prepend(top.SVG(self.last_window)) if self.xtitle is not None: output.append(SVG("text", self.xtitle, transform="translate(%g, %g)" % ((self.x + self.width/2.), (self.y + self.height + self.text_xtitle_offset)), dominant_baseline="text-before-edge", **self.text_attr)) if self.ytitle is not None: output.append(SVG("text", self.ytitle, transform="translate(%g, %g) rotate(-90)" % ((self.x - self.text_ytitle_offset), (self.y + self.height/2.)), **self.text_attr)) return output ###################################################################### def pathtoPath(svg): """Converts SVG("path", d="...") into Path(d=[...]).""" if not isinstance(svg, SVG) or svg.t != "path": raise TypeError ("Only SVG objects can be converted into Paths") attr = dict(svg.attr) d = attr["d"] del attr["d"] for key in attr.keys(): if not isinstance(key, str): value = attr[key] del attr[key] attr[str(key)] = value return Path(d, **attr) class Path: """Path represents an SVG path, an arbitrary set of curves and straight segments. Unlike SVG("path", d="..."), Path stores coordinates as a list of numbers, rather than a string, so that it is transformable in a Fig. Path(d, attribute=value) d required path data attribute=value pairs keyword list SVG attributes See http://www.w3.org/TR/SVG/paths.html for specification of paths from text. Internally, Path data is a list of tuples with these definitions: * ("Z/z",): close the current path * ("H/h", x) or ("V/v", y): a horizontal or vertical line segment to x or y * ("M/m/L/l/T/t", x, y, global): moveto, lineto, or smooth quadratic curveto point (x, y). If global=True, (x, y) should not be transformed. * ("S/sQ/q", cx, cy, cglobal, x, y, global): polybezier or smooth quadratic curveto point (x, y) using (cx, cy) as a control point. If cglobal or global=True, (cx, cy) or (x, y) should not be transformed. * ("C/c", c1x, c1y, c1global, c2x, c2y, c2global, x, y, global): cubic curveto point (x, y) using (c1x, c1y) and (c2x, c2y) as control points. If c1global, c2global, or global=True, (c1x, c1y), (c2x, c2y), or (x, y) should not be transformed. * ("A/a", rx, ry, rglobal, x-axis-rotation, angle, large-arc-flag, sweep-flag, x, y, global): arcto point (x, y) using the aforementioned parameters. * (",/.", rx, ry, rglobal, angle, x, y, global): an ellipse at point (x, y) with radii (rx, ry). If angle is 0, the whole ellipse is drawn; otherwise, a partial ellipse is drawn. """ defaults = {} def __repr__(self): return "" % (len(self.d), self.attr) def __init__(self, d=[], **attr): if isinstance(d, basestring): self.d = self.parse(d) else: self.d = list(d) self.attr = dict(self.defaults) self.attr.update(attr) def parse_whitespace(self, index, pathdata): """Part of Path's text-command parsing algorithm; used internally.""" while index < len(pathdata) and pathdata[index] in (" ", "\t", "\r", "\n", ","): index += 1 return index, pathdata def parse_command(self, index, pathdata): """Part of Path's text-command parsing algorithm; used internally.""" index, pathdata = self.parse_whitespace(index, pathdata) if index >= len(pathdata): return None, index, pathdata command = pathdata[index] if "A" <= command <= "Z" or "a" <= command <= "z": index += 1 return command, index, pathdata else: return None, index, pathdata def parse_number(self, index, pathdata): """Part of Path's text-command parsing algorithm; used internally.""" index, pathdata = self.parse_whitespace(index, pathdata) if index >= len(pathdata): return None, index, pathdata first_digit = pathdata[index] if "0" <= first_digit <= "9" or first_digit in ("-", "+", "."): start = index while index < len(pathdata) and ("0" <= pathdata[index] <= "9" or pathdata[index] in ("-", "+", ".", "e", "E")): index += 1 end = index index = end return float(pathdata[start:end]), index, pathdata else: return None, index, pathdata def parse_boolean(self, index, pathdata): """Part of Path's text-command parsing algorithm; used internally.""" index, pathdata = self.parse_whitespace(index, pathdata) if index >= len(pathdata): return None, index, pathdata first_digit = pathdata[index] if first_digit in ("0", "1"): index += 1 return int(first_digit), index, pathdata else: return None, index, pathdata def parse(self, pathdata): """Parses text-commands, converting them into a list of tuples. Called by the constructor.""" output = [] index = 0 while True: command, index, pathdata = self.parse_command(index, pathdata) index, pathdata = self.parse_whitespace(index, pathdata) if command is None and index == len(pathdata): break # this is the normal way out of the loop if command in ("Z", "z"): output.append((command,)) ###################### elif command in ("H", "h", "V", "v"): errstring = "Path command \"%s\" requires a number at index %d" % (command, index) num1, index, pathdata = self.parse_number(index, pathdata) if num1 is None: raise ValueError ( errstring) while num1 is not None: output.append((command, num1)) num1, index, pathdata = self.parse_number(index, pathdata) ###################### elif command in ("M", "m", "L", "l", "T", "t"): errstring = "Path command \"%s\" requires an x,y pair at index %d" % (command, index) num1, index, pathdata = self.parse_number(index, pathdata) num2, index, pathdata = self.parse_number(index, pathdata) if num1 is None: raise ValueError ( errstring) while num1 is not None: if num2 is None: raise ValueError ( errstring) output.append((command, num1, num2, False)) num1, index, pathdata = self.parse_number(index, pathdata) num2, index, pathdata = self.parse_number(index, pathdata) ###################### elif command in ("S", "s", "Q", "q"): errstring = "Path command \"%s\" requires a cx,cy,x,y quadruplet at index %d" % (command, index) num1, index, pathdata = self.parse_number(index, pathdata) num2, index, pathdata = self.parse_number(index, pathdata) num3, index, pathdata = self.parse_number(index, pathdata) num4, index, pathdata = self.parse_number(index, pathdata) if num1 is None: raise ValueError ( errstring ) while num1 is not None: if num2 is None or num3 is None or num4 is None: raise ValueError (errstring) output.append((command, num1, num2, False, num3, num4, False)) num1, index, pathdata = self.parse_number(index, pathdata) num2, index, pathdata = self.parse_number(index, pathdata) num3, index, pathdata = self.parse_number(index, pathdata) num4, index, pathdata = self.parse_number(index, pathdata) ###################### elif command in ("C", "c"): errstring = "Path command \"%s\" requires a c1x,c1y,c2x,c2y,x,y sextuplet at index %d" % (command, index) num1, index, pathdata = self.parse_number(index, pathdata) num2, index, pathdata = self.parse_number(index, pathdata) num3, index, pathdata = self.parse_number(index, pathdata) num4, index, pathdata = self.parse_number(index, pathdata) num5, index, pathdata = self.parse_number(index, pathdata) num6, index, pathdata = self.parse_number(index, pathdata) if num1 is None: raise ValueError(errstring) while num1 is not None: if num2 is None or num3 is None or num4 is None or num5 is None or num6 is None: raise ValueError(errstring) output.append((command, num1, num2, False, num3, num4, False, num5, num6, False)) num1, index, pathdata = self.parse_number(index, pathdata) num2, index, pathdata = self.parse_number(index, pathdata) num3, index, pathdata = self.parse_number(index, pathdata) num4, index, pathdata = self.parse_number(index, pathdata) num5, index, pathdata = self.parse_number(index, pathdata) num6, index, pathdata = self.parse_number(index, pathdata) ###################### elif command in ("A", "a"): errstring = "Path command \"%s\" requires a rx,ry,angle,large-arc-flag,sweep-flag,x,y septuplet at index %d" % (command, index) num1, index, pathdata = self.parse_number(index, pathdata) num2, index, pathdata = self.parse_number(index, pathdata) num3, index, pathdata = self.parse_number(index, pathdata) num4, index, pathdata = self.parse_boolean(index, pathdata) num5, index, pathdata = self.parse_boolean(index, pathdata) num6, index, pathdata = self.parse_number(index, pathdata) num7, index, pathdata = self.parse_number(index, pathdata) if num1 is None: raise ValueError(errstring) while num1 is not None: if num2 is None or num3 is None or num4 is None or num5 is None or num6 is None or num7 is None: raise ValueError(errstring) output.append((command, num1, num2, False, num3, num4, num5, num6, num7, False)) num1, index, pathdata = self.parse_number(index, pathdata) num2, index, pathdata = self.parse_number(index, pathdata) num3, index, pathdata = self.parse_number(index, pathdata) num4, index, pathdata = self.parse_boolean(index, pathdata) num5, index, pathdata = self.parse_boolean(index, pathdata) num6, index, pathdata = self.parse_number(index, pathdata) num7, index, pathdata = self.parse_number(index, pathdata) return output def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" if isinstance(trans, basestring): trans = totrans(trans) x, y, X, Y = None, None, None, None output = [] for datum in self.d: if not isinstance(datum, (tuple, list)): raise TypeError("pathdata elements must be tuples/lists") command = datum[0] ###################### if command in ("Z", "z"): x, y, X, Y = None, None, None, None output.append("Z") ###################### elif command in ("H", "h", "V", "v"): command, num1 = datum if command == "H" or (command == "h" and x is None): x = num1 elif command == "h": x += num1 elif command == "V" or (command == "v" and y is None): y = num1 elif command == "v": y += num1 if trans is None: X, Y = x, y else: X, Y = trans(x, y) output.append("L%g %g" % (X, Y)) ###################### elif command in ("M", "m", "L", "l", "T", "t"): command, num1, num2, isglobal12 = datum if trans is None or isglobal12: if command.isupper() or X is None or Y is None: X, Y = num1, num2 else: X += num1 Y += num2 x, y = X, Y else: if command.isupper() or x is None or y is None: x, y = num1, num2 else: x += num1 y += num2 X, Y = trans(x, y) COMMAND = command.capitalize() output.append("%s%g %g" % (COMMAND, X, Y)) ###################### elif command in ("S", "s", "Q", "q"): command, num1, num2, isglobal12, num3, num4, isglobal34 = datum if trans is None or isglobal12: if command.isupper() or X is None or Y is None: CX, CY = num1, num2 else: CX = X + num1 CY = Y + num2 else: if command.isupper() or x is None or y is None: cx, cy = num1, num2 else: cx = x + num1 cy = y + num2 CX, CY = trans(cx, cy) if trans is None or isglobal34: if command.isupper() or X is None or Y is None: X, Y = num3, num4 else: X += num3 Y += num4 x, y = X, Y else: if command.isupper() or x is None or y is None: x, y = num3, num4 else: x += num3 y += num4 X, Y = trans(x, y) COMMAND = command.capitalize() output.append("%s%g %g %g %g" % (COMMAND, CX, CY, X, Y)) ###################### elif command in ("C", "c"): command, num1, num2, isglobal12, num3, num4, isglobal34, num5, num6, isglobal56 = datum if trans is None or isglobal12: if command.isupper() or X is None or Y is None: C1X, C1Y = num1, num2 else: C1X = X + num1 C1Y = Y + num2 else: if command.isupper() or x is None or y is None: c1x, c1y = num1, num2 else: c1x = x + num1 c1y = y + num2 C1X, C1Y = trans(c1x, c1y) if trans is None or isglobal34: if command.isupper() or X is None or Y is None: C2X, C2Y = num3, num4 else: C2X = X + num3 C2Y = Y + num4 else: if command.isupper() or x is None or y is None: c2x, c2y = num3, num4 else: c2x = x + num3 c2y = y + num4 C2X, C2Y = trans(c2x, c2y) if trans is None or isglobal56: if command.isupper() or X is None or Y is None: X, Y = num5, num6 else: X += num5 Y += num6 x, y = X, Y else: if command.isupper() or x is None or y is None: x, y = num5, num6 else: x += num5 y += num6 X, Y = trans(x, y) COMMAND = command.capitalize() output.append("%s%g %g %g %g %g %g" % (COMMAND, C1X, C1Y, C2X, C2Y, X, Y)) ###################### elif command in ("A", "a"): command, num1, num2, isglobal12, angle, large_arc_flag, sweep_flag, num3, num4, isglobal34 = datum oldx, oldy = x, y OLDX, OLDY = X, Y if trans is None or isglobal34: if command.isupper() or X is None or Y is None: X, Y = num3, num4 else: X += num3 Y += num4 x, y = X, Y else: if command.isupper() or x is None or y is None: x, y = num3, num4 else: x += num3 y += num4 X, Y = trans(x, y) if x is not None and y is not None: centerx, centery = (x + oldx)/2., (y + oldy)/2. CENTERX, CENTERY = (X + OLDX)/2., (Y + OLDY)/2. if trans is None or isglobal12: RX = CENTERX + num1 RY = CENTERY + num2 else: rx = centerx + num1 ry = centery + num2 RX, RY = trans(rx, ry) COMMAND = command.capitalize() output.append("%s%g %g %g %d %d %g %g" % (COMMAND, RX - CENTERX, RY - CENTERY, angle, large_arc_flag, sweep_flag, X, Y)) elif command in (",", "."): command, num1, num2, isglobal12, angle, num3, num4, isglobal34 = datum if trans is None or isglobal34: if command == "." or X is None or Y is None: X, Y = num3, num4 else: X += num3 Y += num4 x, y = None, None else: if command == "." or x is None or y is None: x, y = num3, num4 else: x += num3 y += num4 X, Y = trans(x, y) if trans is None or isglobal12: RX = X + num1 RY = Y + num2 else: rx = x + num1 ry = y + num2 RX, RY = trans(rx, ry) RX, RY = RX - X, RY - Y X1, Y1 = X + RX * math.cos(angle*math.pi/180.), Y + RX * math.sin(angle*math.pi/180.) X2, Y2 = X + RY * math.sin(angle*math.pi/180.), Y - RY * math.cos(angle*math.pi/180.) X3, Y3 = X - RX * math.cos(angle*math.pi/180.), Y - RX * math.sin(angle*math.pi/180.) X4, Y4 = X - RY * math.sin(angle*math.pi/180.), Y + RY * math.cos(angle*math.pi/180.) output.append("M%g %gA%g %g %g 0 0 %g %gA%g %g %g 0 0 %g %gA%g %g %g 0 0 %g %gA%g %g %g 0 0 %g %g" % ( X1, Y1, RX, RY, angle, X2, Y2, RX, RY, angle, X3, Y3, RX, RY, angle, X4, Y4, RX, RY, angle, X1, Y1)) return SVG("path", d="".join(output), **self.attr) ###################################################################### def funcRtoC(expr, var="t", globals=None, locals=None): """Converts a complex "z(t)" string to a function acceptable for Curve. expr required string in the form "z(t)" var default="t" name of the independent variable globals default=None dict of global variables used in the expression; you may want to use Python's builtin globals() locals default=None dict of local variables """ if locals is None: locals = {} # python 2.3's eval() won't accept None g = cmath.__dict__ if globals is not None: g.update(globals) output = eval("lambda %s: (%s)" % (var, expr), g, locals) split = lambda z: (z.real, z.imag) output2 = lambda t: split(output(t)) set_func_name(output2, "%s -> %s" % (var, expr)) return output2 def funcRtoR2(expr, var="t", globals=None, locals=None): """Converts a "f(t), g(t)" string to a function acceptable for Curve. expr required string in the form "f(t), g(t)" var default="t" name of the independent variable globals default=None dict of global variables used in the expression; you may want to use Python's builtin globals() locals default=None dict of local variables """ if locals is None: locals = {} # python 2.3's eval() won't accept None g = math.__dict__ if globals is not None: g.update(globals) output = eval("lambda %s: (%s)" % (var, expr), g, locals) set_func_name(output, "%s -> %s" % (var, expr)) return output def funcRtoR(expr, var="x", globals=None, locals=None): """Converts a "f(x)" string to a function acceptable for Curve. expr required string in the form "f(x)" var default="x" name of the independent variable globals default=None dict of global variables used in the expression; you may want to use Python's builtin globals() locals default=None dict of local variables """ if locals is None: locals = {} # python 2.3's eval() won't accept None g = math.__dict__ if globals is not None: g.update(globals) output = eval("lambda %s: (%s, %s)" % (var, var, expr), g, locals) set_func_name(output, "%s -> %s" % (var, expr)) return output class Curve: """Draws a parametric function as a path. Curve(f, low, high, loop, attribute=value) f required a Python callable or string in the form "f(t), g(t)" low, high required left and right endpoints loop default=False if True, connect the endpoints attribute=value pairs keyword list SVG attributes """ defaults = {} random_sampling = True recursion_limit = 15 linearity_limit = 0.05 discontinuity_limit = 5. def __repr__(self): return "" % (self.f, self.low, self.high, self.attr) def __init__(self, f, low, high, loop=False, **attr): self.f = f self.low = low self.high = high self.loop = loop self.attr = dict(self.defaults) self.attr.update(attr) ### nested class Sample class Sample: def __repr__(self): t, x, y, X, Y = self.t, self.x, self.y, self.X, self.Y if t is not None: t = "%g" % t if x is not None: x = "%g" % x if y is not None: y = "%g" % y if X is not None: X = "%g" % X if Y is not None: Y = "%g" % Y return "" % (t, x, y, X, Y) def __init__(self, t): self.t = t def link(self, left, right): self.left, self.right = left, right def evaluate(self, f, trans): self.x, self.y = f(self.t) if trans is None: self.X, self.Y = self.x, self.y else: self.X, self.Y = trans(self.x, self.y) ### end Sample ### nested class Samples class Samples: def __repr__(self): return "" % len(self) def __init__(self, left, right): self.left, self.right = left, right def __len__(self): count = 0 current = self.left while current is not None: count += 1 current = current.right return count def __iter__(self): self.current = self.left return self def next(self): current = self.current if current is None: raise StopIteration self.current = self.current.right return current ### end nested class def sample(self, trans=None): """Adaptive-sampling algorithm that chooses the best sample points for a parametric curve between two endpoints and detects discontinuities. Called by SVG().""" oldrecursionlimit = sys.getrecursionlimit() sys.setrecursionlimit(self.recursion_limit + 100) try: # the best way to keep all the information while sampling is to make a linked list if not (self.low < self.high): raise ValueError("low must be less than high") low, high = self.Sample(float(self.low)), self.Sample(float(self.high)) low.link(None, high) high.link(low, None) low.evaluate(self.f, trans) high.evaluate(self.f, trans) # adaptive sampling between the low and high points self.subsample(low, high, 0, trans) # Prune excess points where the curve is nearly linear left = low while left.right is not None: # increment mid and right mid = left.right right = mid.right if (right is not None and left.X is not None and left.Y is not None and mid.X is not None and mid.Y is not None and right.X is not None and right.Y is not None): numer = left.X*(right.Y - mid.Y) + mid.X*(left.Y - right.Y) + right.X*(mid.Y - left.Y) denom = math.sqrt((left.X - right.X)**2 + (left.Y - right.Y)**2) if denom != 0. and abs(numer/denom) < self.linearity_limit: # drop mid (the garbage collector will get it) left.right = right right.left = left else: # increment left left = left.right else: left = left.right self.last_samples = self.Samples(low, high) finally: sys.setrecursionlimit(oldrecursionlimit) def subsample(self, left, right, depth, trans=None): """Part of the adaptive-sampling algorithm that chooses the best sample points. Called by sample().""" if self.random_sampling: mid = self.Sample(left.t + random.uniform(0.3, 0.7) * (right.t - left.t)) else: mid = self.Sample(left.t + 0.5 * (right.t - left.t)) left.right = mid right.left = mid mid.link(left, right) mid.evaluate(self.f, trans) # calculate the distance of closest approach of mid to the line between left and right numer = left.X*(right.Y - mid.Y) + mid.X*(left.Y - right.Y) + right.X*(mid.Y - left.Y) denom = math.sqrt((left.X - right.X)**2 + (left.Y - right.Y)**2) # if we haven't sampled enough or left fails to be close enough to right, or mid fails to be linear enough... if (depth < 3 or (denom == 0 and left.t != right.t) or denom > self.discontinuity_limit or (denom != 0. and abs(numer/denom) > self.linearity_limit)): # and we haven't sampled too many points if depth < self.recursion_limit: self.subsample(left, mid, depth+1, trans) self.subsample(mid, right, depth+1, trans) else: # We've sampled many points and yet it's still not a small linear gap. # Break the line: it's a discontinuity mid.y = mid.Y = None def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" return self.Path(trans).SVG() def Path(self, trans=None, local=False): """Apply the transformation "trans" and return a Path object in global coordinates. If local=True, return a Path in local coordinates (which must be transformed again).""" if isinstance(trans, basestring): trans = totrans(trans) if isinstance(self.f, basestring): self.f = funcRtoR2(self.f) self.sample(trans) output = [] for s in self.last_samples: if s.X is not None and s.Y is not None: if s.left is None or s.left.Y is None: command = "M" else: command = "L" if local: output.append((command, s.x, s.y, False)) else: output.append((command, s.X, s.Y, True)) if self.loop: output.append(("Z",)) return Path(output, **self.attr) ###################################################################### class Poly: """Draws a curve specified by a sequence of points. The curve may be piecewise linear, like a polygon, or a Bezier curve. Poly(d, mode, loop, attribute=value) d required list of tuples representing points and possibly control points mode default="L" "lines", "bezier", "velocity", "foreback", "smooth", or an abbreviation loop default=False if True, connect the first and last point, closing the loop attribute=value pairs keyword list SVG attributes The format of the tuples in d depends on the mode. "lines"/"L" d=[(x,y), (x,y), ...] piecewise-linear segments joining the (x,y) points "bezier"/"B" d=[(x, y, c1x, c1y, c2x, c2y), ...] Bezier curve with two control points (control points preceed (x,y), as in SVG paths). If (c1x,c1y) and (c2x,c2y) both equal (x,y), you get a linear interpolation ("lines") "velocity"/"V" d=[(x, y, vx, vy), ...] curve that passes through (x,y) with velocity (vx,vy) (one unit of arclength per unit time); in other words, (vx,vy) is the tangent vector at (x,y). If (vx,vy) is (0,0), you get a linear interpolation ("lines"). "foreback"/"F" d=[(x, y, bx, by, fx, fy), ...] like "velocity" except that there is a left derivative (bx,by) and a right derivative (fx,fy). If (bx,by) equals (fx,fy) (with no minus sign), you get a "velocity" curve "smooth"/"S" d=[(x,y), (x,y), ...] a "velocity" interpolation with (vx,vy)[i] equal to ((x,y)[i+1] - (x,y)[i-1])/2: the minimal derivative """ defaults = {} def __repr__(self): return "" % ( len(self.d), self.mode, repr(self.loop), self.attr) def __init__(self, d=[], mode="L", loop=False, **attr): self.d = list(d) self.mode = mode self.loop = loop self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" return self.Path(trans).SVG() def Path(self, trans=None, local=False): """Apply the transformation "trans" and return a Path object in global coordinates. If local=True, return a Path in local coordinates (which must be transformed again).""" if isinstance(trans, basestring): trans = totrans(trans) if self.mode[0] == "L" or self.mode[0] == "l": mode = "L" elif self.mode[0] == "B" or self.mode[0] == "b": mode = "B" elif self.mode[0] == "V" or self.mode[0] == "v": mode = "V" elif self.mode[0] == "F" or self.mode[0] == "f": mode = "F" elif self.mode[0] == "S" or self.mode[0] == "s": mode = "S" vx, vy = [0.]*len(self.d), [0.]*len(self.d) for i in xrange(len(self.d)): inext = (i+1) % len(self.d) iprev = (i-1) % len(self.d) vx[i] = (self.d[inext][0] - self.d[iprev][0])/2. vy[i] = (self.d[inext][1] - self.d[iprev][1])/2. if not self.loop and (i == 0 or i == len(self.d)-1): vx[i], vy[i] = 0., 0. else: raise ValueError("mode must be \"lines\", \"bezier\", \"velocity\", \"foreback\", \"smooth\", or an abbreviation") d = [] indexes = list(range(len(self.d))) if self.loop and len(self.d) > 0: indexes.append(0) for i in indexes: inext = (i+1) % len(self.d) iprev = (i-1) % len(self.d) x, y = self.d[i][0], self.d[i][1] if trans is None: X, Y = x, y else: X, Y = trans(x, y) if d == []: if local: d.append(("M", x, y, False)) else: d.append(("M", X, Y, True)) elif mode == "L": if local: d.append(("L", x, y, False)) else: d.append(("L", X, Y, True)) elif mode == "B": c1x, c1y = self.d[i][2], self.d[i][3] if trans is None: C1X, C1Y = c1x, c1y else: C1X, C1Y = trans(c1x, c1y) c2x, c2y = self.d[i][4], self.d[i][5] if trans is None: C2X, C2Y = c2x, c2y else: C2X, C2Y = trans(c2x, c2y) if local: d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False)) else: d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True)) elif mode == "V": c1x, c1y = self.d[iprev][2]/3. + self.d[iprev][0], self.d[iprev][3]/3. + self.d[iprev][1] c2x, c2y = self.d[i][2]/-3. + x, self.d[i][3]/-3. + y if trans is None: C1X, C1Y = c1x, c1y else: C1X, C1Y = trans(c1x, c1y) if trans is None: C2X, C2Y = c2x, c2y else: C2X, C2Y = trans(c2x, c2y) if local: d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False)) else: d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True)) elif mode == "F": c1x, c1y = self.d[iprev][4]/3. + self.d[iprev][0], self.d[iprev][5]/3. + self.d[iprev][1] c2x, c2y = self.d[i][2]/-3. + x, self.d[i][3]/-3. + y if trans is None: C1X, C1Y = c1x, c1y else: C1X, C1Y = trans(c1x, c1y) if trans is None: C2X, C2Y = c2x, c2y else: C2X, C2Y = trans(c2x, c2y) if local: d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False)) else: d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True)) elif mode == "S": c1x, c1y = vx[iprev]/3. + self.d[iprev][0], vy[iprev]/3. + self.d[iprev][1] c2x, c2y = vx[i]/-3. + x, vy[i]/-3. + y if trans is None: C1X, C1Y = c1x, c1y else: C1X, C1Y = trans(c1x, c1y) if trans is None: C2X, C2Y = c2x, c2y else: C2X, C2Y = trans(c2x, c2y) if local: d.append(("C", c1x, c1y, False, c2x, c2y, False, x, y, False)) else: d.append(("C", C1X, C1Y, True, C2X, C2Y, True, X, Y, True)) if self.loop and len(self.d) > 0: d.append(("Z",)) return Path(d, **self.attr) ###################################################################### class Text: """Draws a text string at a specified point in local coordinates. x, y required location of the point in local coordinates d required text/Unicode string attribute=value pairs keyword list SVG attributes """ defaults = {"stroke": "none", "fill": "black", "font-size": 5, } def __repr__(self): return "" % (repr(self.d), self.x, self.y, self.attr) def __init__(self, x, y, d, **attr): self.x = x self.y = y self.d = unicode(d) self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" if isinstance(trans, basestring): trans = totrans(trans) X, Y = self.x, self.y if trans is not None: X, Y = trans(X, Y) return SVG("text", self.d, x=X, y=Y, **self.attr) class TextGlobal: """Draws a text string at a specified point in global coordinates. x, y required location of the point in global coordinates d required text/Unicode string attribute=value pairs keyword list SVG attributes """ defaults = {"stroke": "none", "fill": "black", "font-size": 5, } def __repr__(self): return "" % (repr(self.d), str(self.x), str(self.y), self.attr) def __init__(self, x, y, d, **attr): self.x = x self.y = y self.d = unicode(d) self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" return SVG("text", self.d, x=self.x, y=self.y, **self.attr) ###################################################################### _symbol_templates = {"dot": SVG("symbol", SVG("circle", cx=0, cy=0, r=1, stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"), "box": SVG("symbol", SVG("rect", x1=-1, y1=-1, x2=1, y2=1, stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"), "uptri": SVG("symbol", SVG("path", d="M -1 0.866 L 1 0.866 L 0 -0.866 Z", stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"), "downtri": SVG("symbol", SVG("path", d="M -1 -0.866 L 1 -0.866 L 0 0.866 Z", stroke="none", fill="black"), viewBox="0 0 1 1", overflow="visible"), } def make_symbol(id, shape="dot", **attr): """Creates a new instance of an SVG symbol to avoid cross-linking objects. id required a new identifier (string/Unicode) shape default="dot" the shape name from _symbol_templates attribute=value list keyword list modify the SVG attributes of the new symbol """ output = copy.deepcopy(_symbol_templates[shape]) for i in output.sub: i.attr.update(attr_preprocess(attr)) output["id"] = id return output _circular_dot = make_symbol("circular_dot") class Dots: """Dots draws SVG symbols at a set of points. d required list of (x,y) points symbol default=None SVG symbol or a new identifier to label an auto-generated symbol; if None, use pre-defined _circular_dot width, height default=1, 1 width and height of the symbols in SVG coordinates attribute=value pairs keyword list SVG attributes """ defaults = {} def __repr__(self): return "" % (len(self.d), self.attr) def __init__(self, d=[], symbol=None, width=1., height=1., **attr): self.d = list(d) self.width = width self.height = height self.attr = dict(self.defaults) self.attr.update(attr) if symbol is None: self.symbol = _circular_dot elif isinstance(symbol, SVG): self.symbol = symbol else: self.symbol = make_symbol(symbol) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" if isinstance(trans, basestring): trans = totrans(trans) output = SVG("g", SVG("defs", self.symbol)) id = "#%s" % self.symbol["id"] for p in self.d: x, y = p[0], p[1] if trans is None: X, Y = x, y else: X, Y = trans(x, y) item = SVG("use", x=X, y=Y, xlink__href=id) if self.width is not None: item["width"] = self.width if self.height is not None: item["height"] = self.height output.append(item) return output ###################################################################### _marker_templates = {"arrow_start": SVG("marker", SVG("path", d="M 9 3.6 L 10.5 0 L 0 3.6 L 10.5 7.2 L 9 3.6 Z"), viewBox="0 0 10.5 7.2", refX="9", refY="3.6", markerWidth="10.5", markerHeight="7.2", markerUnits="strokeWidth", orient="auto", stroke="none", fill="black"), "arrow_end": SVG("marker", SVG("path", d="M 1.5 3.6 L 0 0 L 10.5 3.6 L 0 7.2 L 1.5 3.6 Z"), viewBox="0 0 10.5 7.2", refX="1.5", refY="3.6", markerWidth="10.5", markerHeight="7.2", markerUnits="strokeWidth", orient="auto", stroke="none", fill="black"), } def make_marker(id, shape, **attr): """Creates a new instance of an SVG marker to avoid cross-linking objects. id required a new identifier (string/Unicode) shape required the shape name from _marker_templates attribute=value list keyword list modify the SVG attributes of the new marker """ output = copy.deepcopy(_marker_templates[shape]) for i in output.sub: i.attr.update(attr_preprocess(attr)) output["id"] = id return output class Line(Curve): """Draws a line between two points. Line(x1, y1, x2, y2, arrow_start, arrow_end, attribute=value) x1, y1 required the starting point x2, y2 required the ending point arrow_start default=None if an identifier string/Unicode, draw a new arrow object at the beginning of the line; if a marker, draw that marker instead arrow_end default=None same for the end of the line attribute=value pairs keyword list SVG attributes """ defaults = {} def __repr__(self): return "" % ( self.x1, self.y1, self.x2, self.y2, self.attr) def __init__(self, x1, y1, x2, y2, arrow_start=None, arrow_end=None, **attr): self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2 self.arrow_start, self.arrow_end = arrow_start, arrow_end self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" line = self.Path(trans).SVG() if ((self.arrow_start != False and self.arrow_start is not None) or (self.arrow_end != False and self.arrow_end is not None)): defs = SVG("defs") if self.arrow_start != False and self.arrow_start is not None: if isinstance(self.arrow_start, SVG): defs.append(self.arrow_start) line.attr["marker-start"] = "url(#%s)" % self.arrow_start["id"] elif isinstance(self.arrow_start, basestring): defs.append(make_marker(self.arrow_start, "arrow_start")) line.attr["marker-start"] = "url(#%s)" % self.arrow_start else: raise TypeError("arrow_start must be False/None or an id string for the new marker") if self.arrow_end != False and self.arrow_end is not None: if isinstance(self.arrow_end, SVG): defs.append(self.arrow_end) line.attr["marker-end"] = "url(#%s)" % self.arrow_end["id"] elif isinstance(self.arrow_end, basestring): defs.append(make_marker(self.arrow_end, "arrow_end")) line.attr["marker-end"] = "url(#%s)" % self.arrow_end else: raise TypeError("arrow_end must be False/None or an id string for the new marker") return SVG("g", defs, line) return line def Path(self, trans=None, local=False): """Apply the transformation "trans" and return a Path object in global coordinates. If local=True, return a Path in local coordinates (which must be transformed again).""" self.f = lambda t: (self.x1 + t*(self.x2 - self.x1), self.y1 + t*(self.y2 - self.y1)) self.low = 0. self.high = 1. self.loop = False if trans is None: return Path([("M", self.x1, self.y1, not local), ("L", self.x2, self.y2, not local)], **self.attr) else: return Curve.Path(self, trans, local) class LineGlobal: """Draws a line between two points, one or both of which is in global coordinates. Line(x1, y1, x2, y2, lcoal1, local2, arrow_start, arrow_end, attribute=value) x1, y1 required the starting point x2, y2 required the ending point local1 default=False if True, interpret first point as a local coordinate (apply transform) local2 default=False if True, interpret second point as a local coordinate (apply transform) arrow_start default=None if an identifier string/Unicode, draw a new arrow object at the beginning of the line; if a marker, draw that marker instead arrow_end default=None same for the end of the line attribute=value pairs keyword list SVG attributes """ defaults = {} def __repr__(self): local1, local2 = "", "" if self.local1: local1 = "L" if self.local2: local2 = "L" return "" % ( local1, str(self.x1), str(self.y1), local2, str(self.x2), str(self.y2), self.attr) def __init__(self, x1, y1, x2, y2, local1=False, local2=False, arrow_start=None, arrow_end=None, **attr): self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2 self.local1, self.local2 = local1, local2 self.arrow_start, self.arrow_end = arrow_start, arrow_end self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" if isinstance(trans, basestring): trans = totrans(trans) X1, Y1, X2, Y2 = self.x1, self.y1, self.x2, self.y2 if self.local1: X1, Y1 = trans(X1, Y1) if self.local2: X2, Y2 = trans(X2, Y2) line = SVG("path", d="M%s %s L%s %s" % (X1, Y1, X2, Y2), **self.attr) if ((self.arrow_start != False and self.arrow_start is not None) or (self.arrow_end != False and self.arrow_end is not None)): defs = SVG("defs") if self.arrow_start != False and self.arrow_start is not None: if isinstance(self.arrow_start, SVG): defs.append(self.arrow_start) line.attr["marker-start"] = "url(#%s)" % self.arrow_start["id"] elif isinstance(self.arrow_start, basestring): defs.append(make_marker(self.arrow_start, "arrow_start")) line.attr["marker-start"] = "url(#%s)" % self.arrow_start else: raise TypeError("arrow_start must be False/None or an id string for the new marker") if self.arrow_end != False and self.arrow_end is not None: if isinstance(self.arrow_end, SVG): defs.append(self.arrow_end) line.attr["marker-end"] = "url(#%s)" % self.arrow_end["id"] elif isinstance(self.arrow_end, basestring): defs.append(make_marker(self.arrow_end, "arrow_end")) line.attr["marker-end"] = "url(#%s)" % self.arrow_end else: raise TypeError("arrow_end must be False/None or an id string for the new marker") return SVG("g", defs, line) return line class VLine(Line): """Draws a vertical line. VLine(y1, y2, x, attribute=value) y1, y2 required y range x required x position attribute=value pairs keyword list SVG attributes """ defaults = {} def __repr__(self): return "" % (self.y1, self.y2, self.x, self.attr) def __init__(self, y1, y2, x, **attr): self.x = x self.attr = dict(self.defaults) self.attr.update(attr) Line.__init__(self, x, y1, x, y2, **self.attr) def Path(self, trans=None, local=False): """Apply the transformation "trans" and return a Path object in global coordinates. If local=True, return a Path in local coordinates (which must be transformed again).""" self.x1 = self.x self.x2 = self.x return Line.Path(self, trans, local) class HLine(Line): """Draws a horizontal line. HLine(x1, x2, y, attribute=value) x1, x2 required x range y required y position attribute=value pairs keyword list SVG attributes """ defaults = {} def __repr__(self): return "" % (self.x1, self.x2, self.y, self.attr) def __init__(self, x1, x2, y, **attr): self.y = y self.attr = dict(self.defaults) self.attr.update(attr) Line.__init__(self, x1, y, x2, y, **self.attr) def Path(self, trans=None, local=False): """Apply the transformation "trans" and return a Path object in global coordinates. If local=True, return a Path in local coordinates (which must be transformed again).""" self.y1 = self.y self.y2 = self.y return Line.Path(self, trans, local) ###################################################################### class Rect(Curve): """Draws a rectangle. Rect(x1, y1, x2, y2, attribute=value) x1, y1 required the starting point x2, y2 required the ending point attribute=value pairs keyword list SVG attributes """ defaults = {} def __repr__(self): return "" % ( self.x1, self.y1, self.x2, self.y2, self.attr) def __init__(self, x1, y1, x2, y2, **attr): self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2 self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" return self.Path(trans).SVG() def Path(self, trans=None, local=False): """Apply the transformation "trans" and return a Path object in global coordinates. If local=True, return a Path in local coordinates (which must be transformed again).""" if trans is None: return Path([("M", self.x1, self.y1, not local), ("L", self.x2, self.y1, not local), ("L", self.x2, self.y2, not local), ("L", self.x1, self.y2, not local), ("Z",)], **self.attr) else: self.low = 0. self.high = 1. self.loop = False self.f = lambda t: (self.x1 + t*(self.x2 - self.x1), self.y1) d1 = Curve.Path(self, trans, local).d self.f = lambda t: (self.x2, self.y1 + t*(self.y2 - self.y1)) d2 = Curve.Path(self, trans, local).d del d2[0] self.f = lambda t: (self.x2 + t*(self.x1 - self.x2), self.y2) d3 = Curve.Path(self, trans, local).d del d3[0] self.f = lambda t: (self.x1, self.y2 + t*(self.y1 - self.y2)) d4 = Curve.Path(self, trans, local).d del d4[0] return Path(d=(d1 + d2 + d3 + d4 + [("Z",)]), **self.attr) ###################################################################### class Ellipse(Curve): """Draws an ellipse from a semimajor vector (ax,ay) and a semiminor length (b). Ellipse(x, y, ax, ay, b, attribute=value) x, y required the center of the ellipse/circle ax, ay required a vector indicating the length and direction of the semimajor axis b required the length of the semiminor axis. If equal to sqrt(ax2 + ay2), the ellipse is a circle attribute=value pairs keyword list SVG attributes (If sqrt(ax**2 + ay**2) is less than b, then (ax,ay) is actually the semiminor axis.) """ defaults = {} def __repr__(self): return "" % ( self.x, self.y, self.ax, self.ay, self.b, self.attr) def __init__(self, x, y, ax, ay, b, **attr): self.x, self.y, self.ax, self.ay, self.b = x, y, ax, ay, b self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" return self.Path(trans).SVG() def Path(self, trans=None, local=False): """Apply the transformation "trans" and return a Path object in global coordinates. If local=True, return a Path in local coordinates (which must be transformed again).""" angle = math.atan2(self.ay, self.ax) + math.pi/2. bx = self.b * math.cos(angle) by = self.b * math.sin(angle) self.f = lambda t: (self.x + self.ax*math.cos(t) + bx*math.sin(t), self.y + self.ay*math.cos(t) + by*math.sin(t)) self.low = -math.pi self.high = math.pi self.loop = True return Curve.Path(self, trans, local) ###################################################################### def unumber(x): """Converts numbers to a Unicode string, taking advantage of special Unicode characters to make nice minus signs and scientific notation. """ output = u"%g" % x if output[0] == u"-": output = u"\u2013" + output[1:] index = output.find(u"e") if index != -1: uniout = unicode(output[:index]) + u"\u00d710" saw_nonzero = False for n in output[index+1:]: if n == u"+": pass # uniout += u"\u207a" elif n == u"-": uniout += u"\u207b" elif n == u"0": if saw_nonzero: uniout += u"\u2070" elif n == u"1": saw_nonzero = True uniout += u"\u00b9" elif n == u"2": saw_nonzero = True uniout += u"\u00b2" elif n == u"3": saw_nonzero = True uniout += u"\u00b3" elif u"4" <= n <= u"9": saw_nonzero = True if saw_nonzero: uniout += eval("u\"\\u%x\"" % (0x2070 + ord(n) - ord(u"0"))) else: uniout += n if uniout[:2] == u"1\u00d7": uniout = uniout[2:] return uniout return output class Ticks: """Superclass for all graphics primitives that draw ticks, miniticks, and tick labels. This class only draws the ticks. Ticks(f, low, high, ticks, miniticks, labels, logbase, arrow_start, arrow_end, text_attr, attribute=value) f required parametric function along which ticks will be drawn; has the same format as the function used in Curve low, high required range of the independent variable ticks default=-10 request ticks according to the standard tick specification (see below) miniticks default=True request miniticks according to the standard minitick specification (below) labels True request tick labels according to the standard tick label specification (below) logbase default=None if a number, the axis is logarithmic with ticks at the given base (usually 10) arrow_start default=None if a new string identifier, draw an arrow at the low-end of the axis, referenced by that identifier; if an SVG marker object, use that marker arrow_end default=None if a new string identifier, draw an arrow at the high-end of the axis, referenced by that identifier; if an SVG marker object, use that marker text_attr default={} SVG attributes for the text labels attribute=value pairs keyword list SVG attributes for the tick marks Standard tick specification: * True: same as -10 (below). * Positive number N: draw exactly N ticks, including the endpoints. To subdivide an axis into 10 equal-sized segments, ask for 11 ticks. * Negative number -N: draw at least N ticks. Ticks will be chosen with "natural" values, multiples of 2 or 5. * List of values: draw a tick mark at each value. * Dict of value, label pairs: draw a tick mark at each value, labeling it with the given string. This lets you say things like {3.14159: "pi"}. * False or None: no ticks. Standard minitick specification: * True: draw miniticks with "natural" values, more closely spaced than the ticks. * Positive number N: draw exactly N miniticks, including the endpoints. To subdivide an axis into 100 equal-sized segments, ask for 101 miniticks. * Negative number -N: draw at least N miniticks. * List of values: draw a minitick mark at each value. * False or None: no miniticks. Standard tick label specification: * True: use the unumber function (described below) * Format string: standard format strings, e.g. "%5.2f" for 12.34 * Python callable: function that converts numbers to strings * False or None: no labels """ defaults = {"stroke-width": "0.25pt", } text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, } tick_start = -1.5 tick_end = 1.5 minitick_start = -0.75 minitick_end = 0.75 text_start = 2.5 text_angle = 0. def __repr__(self): return "" % ( self.f, self.low, self.high, str(self.ticks), str(self.labels), self.attr) def __init__(self, f, low, high, ticks=-10, miniticks=True, labels=True, logbase=None, arrow_start=None, arrow_end=None, text_attr={}, **attr): self.f = f self.low = low self.high = high self.ticks = ticks self.miniticks = miniticks self.labels = labels self.logbase = logbase self.arrow_start = arrow_start self.arrow_end = arrow_end self.attr = dict(self.defaults) self.attr.update(attr) self.text_attr = dict(self.text_defaults) self.text_attr.update(text_attr) def orient_tickmark(self, t, trans=None): """Return the position, normalized local x vector, normalized local y vector, and angle of a tick at position t. Normally only used internally. """ if isinstance(trans, basestring): trans = totrans(trans) if trans is None: f = self.f else: f = lambda t: trans(*self.f(t)) eps = _epsilon * abs(self.high - self.low) X, Y = f(t) Xprime, Yprime = f(t + eps) xhatx, xhaty = (Xprime - X)/eps, (Yprime - Y)/eps norm = math.sqrt(xhatx**2 + xhaty**2) if norm != 0: xhatx, xhaty = xhatx/norm, xhaty/norm else: xhatx, xhaty = 1., 0. angle = math.atan2(xhaty, xhatx) + math.pi/2. yhatx, yhaty = math.cos(angle), math.sin(angle) return (X, Y), (xhatx, xhaty), (yhatx, yhaty), angle def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" if isinstance(trans, basestring): trans = totrans(trans) self.last_ticks, self.last_miniticks = self.interpret() tickmarks = Path([], **self.attr) minitickmarks = Path([], **self.attr) output = SVG("g") if ((self.arrow_start != False and self.arrow_start is not None) or (self.arrow_end != False and self.arrow_end is not None)): defs = SVG("defs") if self.arrow_start != False and self.arrow_start is not None: if isinstance(self.arrow_start, SVG): defs.append(self.arrow_start) elif isinstance(self.arrow_start, basestring): defs.append(make_marker(self.arrow_start, "arrow_start")) else: raise TypeError("arrow_start must be False/None or an id string for the new marker") if self.arrow_end != False and self.arrow_end is not None: if isinstance(self.arrow_end, SVG): defs.append(self.arrow_end) elif isinstance(self.arrow_end, basestring): defs.append(make_marker(self.arrow_end, "arrow_end")) else: raise TypeError("arrow_end must be False/None or an id string for the new marker") output.append(defs) eps = _epsilon * (self.high - self.low) for t, label in self.last_ticks.items(): (X, Y), (xhatx, xhaty), (yhatx, yhaty), angle = self.orient_tickmark(t, trans) if ((not self.arrow_start or abs(t - self.low) > eps) and (not self.arrow_end or abs(t - self.high) > eps)): tickmarks.d.append(("M", X - yhatx*self.tick_start, Y - yhaty*self.tick_start, True)) tickmarks.d.append(("L", X - yhatx*self.tick_end, Y - yhaty*self.tick_end, True)) angle = (angle - math.pi/2.)*180./math.pi + self.text_angle ########### a HACK! ############ (to be removed when Inkscape handles baselines) if _hacks["inkscape-text-vertical-shift"]: if self.text_start > 0: X += math.cos(angle*math.pi/180. + math.pi/2.) * 2. Y += math.sin(angle*math.pi/180. + math.pi/2.) * 2. else: X += math.cos(angle*math.pi/180. + math.pi/2.) * 2. * 2.5 Y += math.sin(angle*math.pi/180. + math.pi/2.) * 2. * 2.5 ########### end hack ########### if label != "": output.append(SVG("text", label, transform="translate(%g, %g) rotate(%g)" % (X - yhatx*self.text_start, Y - yhaty*self.text_start, angle), **self.text_attr)) for t in self.last_miniticks: skip = False for tt in self.last_ticks.keys(): if abs(t - tt) < eps: skip = True break if not skip: (X, Y), (xhatx, xhaty), (yhatx, yhaty), angle = self.orient_tickmark(t, trans) if ((not self.arrow_start or abs(t - self.low) > eps) and (not self.arrow_end or abs(t - self.high) > eps)): minitickmarks.d.append(("M", X - yhatx*self.minitick_start, Y - yhaty*self.minitick_start, True)) minitickmarks.d.append(("L", X - yhatx*self.minitick_end, Y - yhaty*self.minitick_end, True)) output.prepend(tickmarks.SVG(trans)) output.prepend(minitickmarks.SVG(trans)) return output def interpret(self): """Evaluate and return optimal ticks and miniticks according to the standard minitick specification. Normally only used internally. """ if self.labels is None or self.labels == False: format = lambda x: "" elif self.labels == True: format = unumber elif isinstance(self.labels, basestring): format = lambda x: (self.labels % x) elif callable(self.labels): format = self.labels else: raise TypeError("labels must be None/False, True, a format string, or a number->string function") # Now for the ticks ticks = self.ticks # Case 1: ticks is None/False if ticks is None or ticks == False: return {}, [] # Case 2: ticks is the number of desired ticks elif isinstance(ticks, (int, long)): if ticks == True: ticks = -10 if self.logbase is None: ticks = self.compute_ticks(ticks, format) else: ticks = self.compute_logticks(self.logbase, ticks, format) # Now for the miniticks if self.miniticks == True: if self.logbase is None: return ticks, self.compute_miniticks(ticks) else: return ticks, self.compute_logminiticks(self.logbase) elif isinstance(self.miniticks, (int, long)): return ticks, self.regular_miniticks(self.miniticks) elif getattr(self.miniticks, "__iter__", False): return ticks, self.miniticks elif self.miniticks == False or self.miniticks is None: return ticks, [] else: raise TypeError("miniticks must be None/False, True, a number of desired miniticks, or a list of numbers") # Cases 3 & 4: ticks is iterable elif getattr(ticks, "__iter__", False): # Case 3: ticks is some kind of list if not isinstance(ticks, dict): output = {} eps = _epsilon * (self.high - self.low) for x in ticks: if format == unumber and abs(x) < eps: output[x] = u"0" else: output[x] = format(x) ticks = output # Case 4: ticks is a dict else: pass # Now for the miniticks if self.miniticks == True: if self.logbase is None: return ticks, self.compute_miniticks(ticks) else: return ticks, self.compute_logminiticks(self.logbase) elif isinstance(self.miniticks, (int, long)): return ticks, self.regular_miniticks(self.miniticks) elif getattr(self.miniticks, "__iter__", False): return ticks, self.miniticks elif self.miniticks == False or self.miniticks is None: return ticks, [] else: raise TypeError("miniticks must be None/False, True, a number of desired miniticks, or a list of numbers") else: raise TypeError("ticks must be None/False, a number of desired ticks, a list of numbers, or a dictionary of explicit markers") def compute_ticks(self, N, format): """Return less than -N or exactly N optimal linear ticks. Normally only used internally. """ if self.low >= self.high: raise ValueError("low must be less than high") if N == 1: raise ValueError("N can be 0 or >1 to specify the exact number of ticks or negative to specify a maximum") eps = _epsilon * (self.high - self.low) if N >= 0: output = {} x = self.low for i in xrange(N): if format == unumber and abs(x) < eps: label = u"0" else: label = format(x) output[x] = label x += (self.high - self.low)/(N-1.) return output N = -N counter = 0 granularity = 10**math.ceil(math.log10(max(abs(self.low), abs(self.high)))) lowN = math.ceil(1.*self.low / granularity) highN = math.floor(1.*self.high / granularity) while lowN > highN: countermod3 = counter % 3 if countermod3 == 0: granularity *= 0.5 elif countermod3 == 1: granularity *= 0.4 else: granularity *= 0.5 counter += 1 lowN = math.ceil(1.*self.low / granularity) highN = math.floor(1.*self.high / granularity) last_granularity = granularity last_trial = None while True: trial = {} for n in range(int(lowN), int(highN)+1): x = n * granularity if format == unumber and abs(x) < eps: label = u"0" else: label = format(x) trial[x] = label if int(highN)+1 - int(lowN) >= N: if last_trial is None: v1, v2 = self.low, self.high return {v1: format(v1), v2: format(v2)} else: low_in_ticks, high_in_ticks = False, False for t in last_trial.keys(): if 1.*abs(t - self.low)/last_granularity < _epsilon: low_in_ticks = True if 1.*abs(t - self.high)/last_granularity < _epsilon: high_in_ticks = True lowN = 1.*self.low / last_granularity highN = 1.*self.high / last_granularity if abs(lowN - round(lowN)) < _epsilon and not low_in_ticks: last_trial[self.low] = format(self.low) if abs(highN - round(highN)) < _epsilon and not high_in_ticks: last_trial[self.high] = format(self.high) return last_trial last_granularity = granularity last_trial = trial countermod3 = counter % 3 if countermod3 == 0: granularity *= 0.5 elif countermod3 == 1: granularity *= 0.4 else: granularity *= 0.5 counter += 1 lowN = math.ceil(1.*self.low / granularity) highN = math.floor(1.*self.high / granularity) def regular_miniticks(self, N): """Return exactly N linear ticks. Normally only used internally. """ output = [] x = self.low for i in xrange(N): output.append(x) x += (self.high - self.low)/(N-1.) return output def compute_miniticks(self, original_ticks): """Return optimal linear miniticks, given a set of ticks. Normally only used internally. """ if len(original_ticks) < 2: original_ticks = ticks(self.low, self.high) # XXX ticks is undefined! original_ticks = original_ticks.keys() original_ticks.sort() if self.low > original_ticks[0] + _epsilon or self.high < original_ticks[-1] - _epsilon: raise ValueError("original_ticks {%g...%g} extend beyond [%g, %g]" % (original_ticks[0], original_ticks[-1], self.low, self.high)) granularities = [] for i in range(len(original_ticks)-1): granularities.append(original_ticks[i+1] - original_ticks[i]) spacing = 10**(math.ceil(math.log10(min(granularities)) - 1)) output = [] x = original_ticks[0] - math.ceil(1.*(original_ticks[0] - self.low) / spacing) * spacing while x <= self.high: if x >= self.low: already_in_ticks = False for t in original_ticks: if abs(x-t) < _epsilon * (self.high - self.low): already_in_ticks = True if not already_in_ticks: output.append(x) x += spacing return output def compute_logticks(self, base, N, format): """Return less than -N or exactly N optimal logarithmic ticks. Normally only used internally. """ if self.low >= self.high: raise ValueError("low must be less than high") if N == 1: raise ValueError("N can be 0 or >1 to specify the exact number of ticks or negative to specify a maximum") eps = _epsilon * (self.high - self.low) if N >= 0: output = {} x = self.low for i in xrange(N): if format == unumber and abs(x) < eps: label = u"0" else: label = format(x) output[x] = label x += (self.high - self.low)/(N-1.) return output N = -N lowN = math.floor(math.log(self.low, base)) highN = math.ceil(math.log(self.high, base)) output = {} for n in range(int(lowN), int(highN)+1): x = base**n label = format(x) if self.low <= x <= self.high: output[x] = label for i in range(1, len(output)): keys = output.keys() keys.sort() keys = keys[::i] values = map(lambda k: output[k], keys) if len(values) <= N: for k in output.keys(): if k not in keys: output[k] = "" break if len(output) <= 2: output2 = self.compute_ticks(N=-int(math.ceil(N/2.)), format=format) lowest = min(output2) for k in output: if k < lowest: output2[k] = output[k] output = output2 return output def compute_logminiticks(self, base): """Return optimal logarithmic miniticks, given a set of ticks. Normally only used internally. """ if self.low >= self.high: raise ValueError("low must be less than high") lowN = math.floor(math.log(self.low, base)) highN = math.ceil(math.log(self.high, base)) output = [] num_ticks = 0 for n in range(int(lowN), int(highN)+1): x = base**n if self.low <= x <= self.high: num_ticks += 1 for m in range(2, int(math.ceil(base))): minix = m * x if self.low <= minix <= self.high: output.append(minix) if num_ticks <= 2: return [] else: return output ###################################################################### class CurveAxis(Curve, Ticks): """Draw an axis with tick marks along a parametric curve. CurveAxis(f, low, high, ticks, miniticks, labels, logbase, arrow_start, arrow_end, text_attr, attribute=value) f required a Python callable or string in the form "f(t), g(t)", just like Curve low, high required left and right endpoints ticks default=-10 request ticks according to the standard tick specification (see help(Ticks)) miniticks default=True request miniticks according to the standard minitick specification labels True request tick labels according to the standard tick label specification logbase default=None if a number, the x axis is logarithmic with ticks at the given base (10 being the most common) arrow_start default=None if a new string identifier, draw an arrow at the low-end of the axis, referenced by that identifier; if an SVG marker object, use that marker arrow_end default=None if a new string identifier, draw an arrow at the high-end of the axis, referenced by that identifier; if an SVG marker object, use that marker text_attr default={} SVG attributes for the text labels attribute=value pairs keyword list SVG attributes """ defaults = {"stroke-width": "0.25pt", } text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, } def __repr__(self): return "" % ( self.f, self.low, self.high, str(self.ticks), str(self.labels), self.attr) def __init__(self, f, low, high, ticks=-10, miniticks=True, labels=True, logbase=None, arrow_start=None, arrow_end=None, text_attr={}, **attr): tattr = dict(self.text_defaults) tattr.update(text_attr) Curve.__init__(self, f, low, high) Ticks.__init__(self, f, low, high, ticks, miniticks, labels, logbase, arrow_start, arrow_end, tattr, **attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" func = Curve.SVG(self, trans) ticks = Ticks.SVG(self, trans) # returns a if self.arrow_start != False and self.arrow_start is not None: if isinstance(self.arrow_start, basestring): func.attr["marker-start"] = "url(#%s)" % self.arrow_start else: func.attr["marker-start"] = "url(#%s)" % self.arrow_start.id if self.arrow_end != False and self.arrow_end is not None: if isinstance(self.arrow_end, basestring): func.attr["marker-end"] = "url(#%s)" % self.arrow_end else: func.attr["marker-end"] = "url(#%s)" % self.arrow_end.id ticks.append(func) return ticks class LineAxis(Line, Ticks): """Draws an axis with tick marks along a line. LineAxis(x1, y1, x2, y2, start, end, ticks, miniticks, labels, logbase, arrow_start, arrow_end, text_attr, attribute=value) x1, y1 required starting point x2, y2 required ending point start, end default=0, 1 values to start and end labeling ticks default=-10 request ticks according to the standard tick specification (see help(Ticks)) miniticks default=True request miniticks according to the standard minitick specification labels True request tick labels according to the standard tick label specification logbase default=None if a number, the x axis is logarithmic with ticks at the given base (usually 10) arrow_start default=None if a new string identifier, draw an arrow at the low-end of the axis, referenced by that identifier; if an SVG marker object, use that marker arrow_end default=None if a new string identifier, draw an arrow at the high-end of the axis, referenced by that identifier; if an SVG marker object, use that marker text_attr default={} SVG attributes for the text labels attribute=value pairs keyword list SVG attributes """ defaults = {"stroke-width": "0.25pt", } text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, } def __repr__(self): return "" % ( self.x1, self.y1, self.x2, self.y2, str(self.ticks), str(self.labels), self.attr) def __init__(self, x1, y1, x2, y2, start=0., end=1., ticks=-10, miniticks=True, labels=True, logbase=None, arrow_start=None, arrow_end=None, exclude=None, text_attr={}, **attr): self.start = start self.end = end self.exclude = exclude tattr = dict(self.text_defaults) tattr.update(text_attr) Line.__init__(self, x1, y1, x2, y2, **attr) Ticks.__init__(self, None, None, None, ticks, miniticks, labels, logbase, arrow_start, arrow_end, tattr, **attr) def interpret(self): if self.exclude is not None and not (isinstance(self.exclude, (tuple, list)) and len(self.exclude) == 2 and isinstance(self.exclude[0], (int, long, float)) and isinstance(self.exclude[1], (int, long, float))): raise TypeError("exclude must either be None or (low, high)") ticks, miniticks = Ticks.interpret(self) if self.exclude is None: return ticks, miniticks ticks2 = {} for loc, label in ticks.items(): if self.exclude[0] <= loc <= self.exclude[1]: ticks2[loc] = "" else: ticks2[loc] = label return ticks2, miniticks def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" line = Line.SVG(self, trans) # must be evaluated first, to set self.f, self.low, self.high f01 = self.f self.f = lambda t: f01(1. * (t - self.start) / (self.end - self.start)) self.low = self.start self.high = self.end if self.arrow_start != False and self.arrow_start is not None: if isinstance(self.arrow_start, basestring): line.attr["marker-start"] = "url(#%s)" % self.arrow_start else: line.attr["marker-start"] = "url(#%s)" % self.arrow_start.id if self.arrow_end != False and self.arrow_end is not None: if isinstance(self.arrow_end, basestring): line.attr["marker-end"] = "url(#%s)" % self.arrow_end else: line.attr["marker-end"] = "url(#%s)" % self.arrow_end.id ticks = Ticks.SVG(self, trans) # returns a ticks.append(line) return ticks class XAxis(LineAxis): """Draws an x axis with tick marks. XAxis(xmin, xmax, aty, ticks, miniticks, labels, logbase, arrow_start, arrow_end, exclude, text_attr, attribute=value) xmin, xmax required the x range aty default=0 y position to draw the axis ticks default=-10 request ticks according to the standard tick specification (see help(Ticks)) miniticks default=True request miniticks according to the standard minitick specification labels True request tick labels according to the standard tick label specification logbase default=None if a number, the x axis is logarithmic with ticks at the given base (usually 10) arrow_start default=None if a new string identifier, draw an arrow at the low-end of the axis, referenced by that identifier; if an SVG marker object, use that marker arrow_end default=None if a new string identifier, draw an arrow at the high-end of the axis, referenced by that identifier; if an SVG marker object, use that marker exclude default=None if a (low, high) pair, don't draw text labels within this range text_attr default={} SVG attributes for the text labels attribute=value pairs keyword list SVG attributes for all lines The exclude option is provided for Axes to keep text from overlapping where the axes cross. Normal users are not likely to need it. """ defaults = {"stroke-width": "0.25pt", } text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, "dominant-baseline": "text-before-edge", } text_start = -1. text_angle = 0. def __repr__(self): return "" % ( self.xmin, self.xmax, self.aty, str(self.ticks), str(self.labels), self.attr) # XXX self.xmin/xmax undefd! def __init__(self, xmin, xmax, aty=0, ticks=-10, miniticks=True, labels=True, logbase=None, arrow_start=None, arrow_end=None, exclude=None, text_attr={}, **attr): self.aty = aty tattr = dict(self.text_defaults) tattr.update(text_attr) LineAxis.__init__(self, xmin, aty, xmax, aty, xmin, xmax, ticks, miniticks, labels, logbase, arrow_start, arrow_end, exclude, tattr, **attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" self.y1 = self.aty self.y2 = self.aty return LineAxis.SVG(self, trans) class YAxis(LineAxis): """Draws a y axis with tick marks. YAxis(ymin, ymax, atx, ticks, miniticks, labels, logbase, arrow_start, arrow_end, exclude, text_attr, attribute=value) ymin, ymax required the y range atx default=0 x position to draw the axis ticks default=-10 request ticks according to the standard tick specification (see help(Ticks)) miniticks default=True request miniticks according to the standard minitick specification labels True request tick labels according to the standard tick label specification logbase default=None if a number, the y axis is logarithmic with ticks at the given base (usually 10) arrow_start default=None if a new string identifier, draw an arrow at the low-end of the axis, referenced by that identifier; if an SVG marker object, use that marker arrow_end default=None if a new string identifier, draw an arrow at the high-end of the axis, referenced by that identifier; if an SVG marker object, use that marker exclude default=None if a (low, high) pair, don't draw text labels within this range text_attr default={} SVG attributes for the text labels attribute=value pairs keyword list SVG attributes for all lines The exclude option is provided for Axes to keep text from overlapping where the axes cross. Normal users are not likely to need it. """ defaults = {"stroke-width": "0.25pt", } text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, "text-anchor": "end", "dominant-baseline": "middle", } text_start = 2.5 text_angle = 90. def __repr__(self): return "" % ( self.ymin, self.ymax, self.atx, str(self.ticks), str(self.labels), self.attr) # XXX self.ymin/ymax undefd! def __init__(self, ymin, ymax, atx=0, ticks=-10, miniticks=True, labels=True, logbase=None, arrow_start=None, arrow_end=None, exclude=None, text_attr={}, **attr): self.atx = atx tattr = dict(self.text_defaults) tattr.update(text_attr) LineAxis.__init__(self, atx, ymin, atx, ymax, ymin, ymax, ticks, miniticks, labels, logbase, arrow_start, arrow_end, exclude, tattr, **attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" self.x1 = self.atx self.x2 = self.atx return LineAxis.SVG(self, trans) class Axes: """Draw a pair of intersecting x-y axes. Axes(xmin, xmax, ymin, ymax, atx, aty, xticks, xminiticks, xlabels, xlogbase, yticks, yminiticks, ylabels, ylogbase, arrows, text_attr, attribute=value) xmin, xmax required the x range ymin, ymax required the y range atx, aty default=0, 0 point where the axes try to cross; if outside the range, the axes will cross at the closest corner xticks default=-10 request ticks according to the standard tick specification (see help(Ticks)) xminiticks default=True request miniticks according to the standard minitick specification xlabels True request tick labels according to the standard tick label specification xlogbase default=None if a number, the x axis is logarithmic with ticks at the given base (usually 10) yticks default=-10 request ticks according to the standard tick specification yminiticks default=True request miniticks according to the standard minitick specification ylabels True request tick labels according to the standard tick label specification ylogbase default=None if a number, the y axis is logarithmic with ticks at the given base (usually 10) arrows default=None if a new string identifier, draw arrows referenced by that identifier text_attr default={} SVG attributes for the text labels attribute=value pairs keyword list SVG attributes for all lines """ defaults = {"stroke-width": "0.25pt", } text_defaults = {"stroke": "none", "fill": "black", "font-size": 5, } def __repr__(self): return "" % ( self.xmin, self.xmax, self.ymin, self.ymax, self.atx, self.aty, self.attr) def __init__(self, xmin, xmax, ymin, ymax, atx=0, aty=0, xticks=-10, xminiticks=True, xlabels=True, xlogbase=None, yticks=-10, yminiticks=True, ylabels=True, ylogbase=None, arrows=None, text_attr={}, **attr): self.xmin, self.xmax = xmin, xmax self.ymin, self.ymax = ymin, ymax self.atx, self.aty = atx, aty self.xticks, self.xminiticks, self.xlabels, self.xlogbase = xticks, xminiticks, xlabels, xlogbase self.yticks, self.yminiticks, self.ylabels, self.ylogbase = yticks, yminiticks, ylabels, ylogbase self.arrows = arrows self.text_attr = dict(self.text_defaults) self.text_attr.update(text_attr) self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" atx, aty = self.atx, self.aty if atx < self.xmin: atx = self.xmin if atx > self.xmax: atx = self.xmax if aty < self.ymin: aty = self.ymin if aty > self.ymax: aty = self.ymax xmargin = 0.1 * abs(self.ymin - self.ymax) xexclude = atx - xmargin, atx + xmargin ymargin = 0.1 * abs(self.xmin - self.xmax) yexclude = aty - ymargin, aty + ymargin if self.arrows is not None and self.arrows != False: xarrow_start = self.arrows + ".xstart" xarrow_end = self.arrows + ".xend" yarrow_start = self.arrows + ".ystart" yarrow_end = self.arrows + ".yend" else: xarrow_start = xarrow_end = yarrow_start = yarrow_end = None xaxis = XAxis(self.xmin, self.xmax, aty, self.xticks, self.xminiticks, self.xlabels, self.xlogbase, xarrow_start, xarrow_end, exclude=xexclude, text_attr=self.text_attr, **self.attr).SVG(trans) yaxis = YAxis(self.ymin, self.ymax, atx, self.yticks, self.yminiticks, self.ylabels, self.ylogbase, yarrow_start, yarrow_end, exclude=yexclude, text_attr=self.text_attr, **self.attr).SVG(trans) return SVG("g", *(xaxis.sub + yaxis.sub)) ###################################################################### class HGrid(Ticks): """Draws the horizontal lines of a grid over a specified region using the standard tick specification (see help(Ticks)) to place the grid lines. HGrid(xmin, xmax, low, high, ticks, miniticks, logbase, mini_attr, attribute=value) xmin, xmax required the x range low, high required the y range ticks default=-10 request ticks according to the standard tick specification (see help(Ticks)) miniticks default=False request miniticks according to the standard minitick specification logbase default=None if a number, the axis is logarithmic with ticks at the given base (usually 10) mini_attr default={} SVG attributes for the minitick-lines (if miniticks != False) attribute=value pairs keyword list SVG attributes for the major tick lines """ defaults = {"stroke-width": "0.25pt", "stroke": "gray", } mini_defaults = {"stroke-width": "0.25pt", "stroke": "lightgray", "stroke-dasharray": "1,1", } def __repr__(self): return "" % ( self.xmin, self.xmax, self.low, self.high, str(self.ticks), str(self.miniticks), self.attr) def __init__(self, xmin, xmax, low, high, ticks=-10, miniticks=False, logbase=None, mini_attr={}, **attr): self.xmin, self.xmax = xmin, xmax self.mini_attr = dict(self.mini_defaults) self.mini_attr.update(mini_attr) Ticks.__init__(self, None, low, high, ticks, miniticks, None, logbase) self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" self.last_ticks, self.last_miniticks = Ticks.interpret(self) ticksd = [] for t in self.last_ticks.keys(): ticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d miniticksd = [] for t in self.last_miniticks: miniticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d return SVG("g", Path(d=ticksd, **self.attr).SVG(), Path(d=miniticksd, **self.mini_attr).SVG()) class VGrid(Ticks): """Draws the vertical lines of a grid over a specified region using the standard tick specification (see help(Ticks)) to place the grid lines. HGrid(ymin, ymax, low, high, ticks, miniticks, logbase, mini_attr, attribute=value) ymin, ymax required the y range low, high required the x range ticks default=-10 request ticks according to the standard tick specification (see help(Ticks)) miniticks default=False request miniticks according to the standard minitick specification logbase default=None if a number, the axis is logarithmic with ticks at the given base (usually 10) mini_attr default={} SVG attributes for the minitick-lines (if miniticks != False) attribute=value pairs keyword list SVG attributes for the major tick lines """ defaults = {"stroke-width": "0.25pt", "stroke": "gray", } mini_defaults = {"stroke-width": "0.25pt", "stroke": "lightgray", "stroke-dasharray": "1,1", } def __repr__(self): return "" % ( self.ymin, self.ymax, self.low, self.high, str(self.ticks), str(self.miniticks), self.attr) def __init__(self, ymin, ymax, low, high, ticks=-10, miniticks=False, logbase=None, mini_attr={}, **attr): self.ymin, self.ymax = ymin, ymax self.mini_attr = dict(self.mini_defaults) self.mini_attr.update(mini_attr) Ticks.__init__(self, None, low, high, ticks, miniticks, None, logbase) self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" self.last_ticks, self.last_miniticks = Ticks.interpret(self) ticksd = [] for t in self.last_ticks.keys(): ticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d miniticksd = [] for t in self.last_miniticks: miniticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d return SVG("g", Path(d=ticksd, **self.attr).SVG(), Path(d=miniticksd, **self.mini_attr).SVG()) class Grid(Ticks): """Draws a grid over a specified region using the standard tick specification (see help(Ticks)) to place the grid lines. Grid(xmin, xmax, ymin, ymax, ticks, miniticks, logbase, mini_attr, attribute=value) xmin, xmax required the x range ymin, ymax required the y range ticks default=-10 request ticks according to the standard tick specification (see help(Ticks)) miniticks default=False request miniticks according to the standard minitick specification logbase default=None if a number, the axis is logarithmic with ticks at the given base (usually 10) mini_attr default={} SVG attributes for the minitick-lines (if miniticks != False) attribute=value pairs keyword list SVG attributes for the major tick lines """ defaults = {"stroke-width": "0.25pt", "stroke": "gray", } mini_defaults = {"stroke-width": "0.25pt", "stroke": "lightgray", "stroke-dasharray": "1,1", } def __repr__(self): return "" % ( self.xmin, self.xmax, self.ymin, self.ymax, str(self.ticks), str(self.miniticks), self.attr) def __init__(self, xmin, xmax, ymin, ymax, ticks=-10, miniticks=False, logbase=None, mini_attr={}, **attr): self.xmin, self.xmax = xmin, xmax self.ymin, self.ymax = ymin, ymax self.mini_attr = dict(self.mini_defaults) self.mini_attr.update(mini_attr) Ticks.__init__(self, None, None, None, ticks, miniticks, None, logbase) self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" self.low, self.high = self.xmin, self.xmax self.last_xticks, self.last_xminiticks = Ticks.interpret(self) self.low, self.high = self.ymin, self.ymax self.last_yticks, self.last_yminiticks = Ticks.interpret(self) ticksd = [] for t in self.last_xticks.keys(): ticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d for t in self.last_yticks.keys(): ticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d miniticksd = [] for t in self.last_xminiticks: miniticksd += Line(t, self.ymin, t, self.ymax).Path(trans).d for t in self.last_yminiticks: miniticksd += Line(self.xmin, t, self.xmax, t).Path(trans).d return SVG("g", Path(d=ticksd, **self.attr).SVG(), Path(d=miniticksd, **self.mini_attr).SVG()) ###################################################################### class XErrorBars: """Draws x error bars at a set of points. This is usually used before (under) a set of Dots at the same points. XErrorBars(d, attribute=value) d required list of (x,y,xerr...) points attribute=value pairs keyword list SVG attributes If points in d have * 3 elements, the third is the symmetric error bar * 4 elements, the third and fourth are the asymmetric lower and upper error bar. The third element should be negative, e.g. (5, 5, -1, 2) is a bar from 4 to 7. * more than 4, a tick mark is placed at each value. This lets you nest errors from different sources, correlated and uncorrelated, statistical and systematic, etc. """ defaults = {"stroke-width": "0.25pt", } def __repr__(self): return "" % len(self.d) def __init__(self, d=[], **attr): self.d = list(d) self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" if isinstance(trans, basestring): trans = totrans(trans) # only once output = SVG("g") for p in self.d: x, y = p[0], p[1] if len(p) == 3: bars = [x - p[2], x + p[2]] else: bars = [x + pi for pi in p[2:]] start, end = min(bars), max(bars) output.append(LineAxis(start, y, end, y, start, end, bars, False, False, **self.attr).SVG(trans)) return output class YErrorBars: """Draws y error bars at a set of points. This is usually used before (under) a set of Dots at the same points. YErrorBars(d, attribute=value) d required list of (x,y,yerr...) points attribute=value pairs keyword list SVG attributes If points in d have * 3 elements, the third is the symmetric error bar * 4 elements, the third and fourth are the asymmetric lower and upper error bar. The third element should be negative, e.g. (5, 5, -1, 2) is a bar from 4 to 7. * more than 4, a tick mark is placed at each value. This lets you nest errors from different sources, correlated and uncorrelated, statistical and systematic, etc. """ defaults = {"stroke-width": "0.25pt", } def __repr__(self): return "" % len(self.d) def __init__(self, d=[], **attr): self.d = list(d) self.attr = dict(self.defaults) self.attr.update(attr) def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" if isinstance(trans, basestring): trans = totrans(trans) # only once output = SVG("g") for p in self.d: x, y = p[0], p[1] if len(p) == 3: bars = [y - p[2], y + p[2]] else: bars = [y + pi for pi in p[2:]] start, end = min(bars), max(bars) output.append(LineAxis(x, start, x, end, start, end, bars, False, False, **self.attr).SVG(trans)) return output