/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace std; using namespace cv; using namespace cv::gpu; using namespace cvtest; using namespace testing; ////////////////////////////////////////////////////////////////////// // random generators int randomInt(int minVal, int maxVal) { RNG& rng = TS::ptr()->get_rng(); return rng.uniform(minVal, maxVal); } double randomDouble(double minVal, double maxVal) { RNG& rng = TS::ptr()->get_rng(); return rng.uniform(minVal, maxVal); } Size randomSize(int minVal, int maxVal) { return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); } Scalar randomScalar(double minVal, double maxVal) { return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal)); } Mat randomMat(Size size, int type, double minVal, double maxVal) { return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false); } ////////////////////////////////////////////////////////////////////// // GpuMat create cv::gpu::GpuMat createMat(cv::Size size, int type, bool useRoi) { Size size0 = size; if (useRoi) { size0.width += randomInt(5, 15); size0.height += randomInt(5, 15); } GpuMat d_m(size0, type); if (size0 != size) d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height)); return d_m; } GpuMat loadMat(const Mat& m, bool useRoi) { GpuMat d_m = createMat(m.size(), m.type(), useRoi); d_m.upload(m); return d_m; } ////////////////////////////////////////////////////////////////////// // Image load Mat readImage(const string& fileName, int flags) { return imread(string(cvtest::TS::ptr()->get_data_path()) + fileName, flags); } Mat readImageType(const string& fname, int type) { Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR); if (CV_MAT_CN(type) == 4) { Mat temp; cvtColor(src, temp, cv::COLOR_BGR2BGRA); swap(src, temp); } src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0); return src; } ////////////////////////////////////////////////////////////////////// // Gpu devices bool supportFeature(const DeviceInfo& info, FeatureSet feature) { return TargetArchs::builtWith(feature) && info.supports(feature); } const vector& devices() { static vector devs; static bool first = true; if (first) { int deviceCount = getCudaEnabledDeviceCount(); devs.reserve(deviceCount); for (int i = 0; i < deviceCount; ++i) { DeviceInfo info(i); if (info.isCompatible()) devs.push_back(info); } first = false; } return devs; } vector devices(FeatureSet feature) { const vector& d = devices(); vector devs_filtered; if (TargetArchs::builtWith(feature)) { devs_filtered.reserve(d.size()); for (size_t i = 0, size = d.size(); i < size; ++i) { const DeviceInfo& info = d[i]; if (info.supports(feature)) devs_filtered.push_back(info); } } return devs_filtered; } ////////////////////////////////////////////////////////////////////// // Additional assertion Mat getMat(InputArray arr) { if (arr.kind() == _InputArray::GPU_MAT) { Mat m; arr.getGpuMat().download(m); return m; } return arr.getMat(); } double checkNorm(InputArray m1, InputArray m2) { return norm(getMat(m1), getMat(m2), NORM_INF); } void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask) { if (src.depth() != CV_8S) { minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask); return; } // OpenCV's minMaxLoc doesn't support CV_8S type double minVal = numeric_limits::max(); Point minLoc(-1, -1); double maxVal = -numeric_limits::max(); Point maxLoc(-1, -1); for (int y = 0; y < src.rows; ++y) { const schar* src_row = src.ptr(y); const uchar* mask_row = mask.empty() ? 0 : mask.ptr(y); for (int x = 0; x < src.cols; ++x) { if (!mask_row || mask_row[x]) { schar val = src_row[x]; if (val < minVal) { minVal = val; minLoc = cv::Point(x, y); } if (val > maxVal) { maxVal = val; maxLoc = cv::Point(x, y); } } } } if (minVal_) *minVal_ = minVal; if (maxVal_) *maxVal_ = maxVal; if (minLoc_) *minLoc_ = minLoc; if (maxLoc_) *maxLoc_ = maxLoc; } namespace { template string printMatValImpl(const Mat& m, Point p) { const int cn = m.channels(); ostringstream ostr; ostr << "("; p.x /= cn; ostr << static_cast(m.at(p.y, p.x * cn)); for (int c = 1; c < m.channels(); ++c) { ostr << ", " << static_cast(m.at(p.y, p.x * cn + c)); } ostr << ")"; return ostr.str(); } string printMatVal(const Mat& m, Point p) { typedef string (*func_t)(const Mat& m, Point p); static const func_t funcs[] = { printMatValImpl, printMatValImpl, printMatValImpl, printMatValImpl, printMatValImpl, printMatValImpl, printMatValImpl }; return funcs[m.depth()](m, p); } } testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1_, cv::InputArray m2_, double eps) { Mat m1 = getMat(m1_); Mat m2 = getMat(m2_); if (m1.size() != m2.size()) { return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \"" << expr1 << "\" [" << PrintToString(m1.size()) << "] vs \"" << expr2 << "\" [" << PrintToString(m2.size()) << "]"; } if (m1.type() != m2.type()) { return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \"" << expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \"" << expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]"; } Mat diff; absdiff(m1.reshape(1), m2.reshape(1), diff); double maxVal = 0.0; Point maxLoc; minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc); if (maxVal > eps) { return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2 << "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")" << ", which exceeds \"" << eps_expr << "\", where \"" << expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \"" << expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \"" << eps_expr << "\" evaluates to " << eps; } return AssertionSuccess(); } double checkSimilarity(InputArray m1, InputArray m2) { Mat diff; matchTemplate(getMat(m1), getMat(m2), diff, CV_TM_CCORR_NORMED); return std::abs(diff.at(0, 0) - 1.f); } ////////////////////////////////////////////////////////////////////// // Helper structs for value-parameterized tests vector depths(int depth_start, int depth_end) { vector v; v.reserve((depth_end - depth_start + 1)); for (int depth = depth_start; depth <= depth_end; ++depth) v.push_back(depth); return v; } vector types(int depth_start, int depth_end, int cn_start, int cn_end) { vector v; v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1)); for (int depth = depth_start; depth <= depth_end; ++depth) { for (int cn = cn_start; cn <= cn_end; ++cn) { v.push_back(CV_MAKETYPE(depth, cn)); } } return v; } const vector& all_types() { static vector v = types(CV_8U, CV_64F, 1, 4); return v; } void cv::gpu::PrintTo(const DeviceInfo& info, ostream* os) { (*os) << info.name(); } void PrintTo(const UseRoi& useRoi, std::ostream* os) { if (useRoi) (*os) << "sub matrix"; else (*os) << "whole matrix"; } void PrintTo(const Inverse& inverse, std::ostream* os) { if (inverse) (*os) << "inverse"; else (*os) << "direct"; } void showDiff(InputArray gold_, InputArray actual_, double eps) { Mat gold = getMat(gold_); Mat actual = getMat(actual_); Mat diff; absdiff(gold, actual, diff); threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY); namedWindow("gold", WINDOW_NORMAL); namedWindow("actual", WINDOW_NORMAL); namedWindow("diff", WINDOW_NORMAL); imshow("gold", gold); imshow("actual", actual); imshow("diff", diff); waitKey(); }